Last active
April 6, 2017 15:45
-
-
Save rawkintrevo/3869030ff1a731d43c5e77979a5bf4a8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Created by rawkintrevo on 4/5/17. | |
*/ | |
// Only need these so intelliJ doesn't complain | |
import org.apache.mahout.math._ | |
import org.apache.mahout.math.scalabindings._ | |
import org.apache.mahout.math.drm._ | |
import org.apache.mahout.math.scalabindings.RLikeOps._ | |
import org.apache.mahout.math.drm.RLikeDrmOps._ | |
import org.apache.mahout.sparkbindings._ | |
import org.apache.spark.SparkContext | |
import org.apache.spark.SparkContext._ | |
import org.apache.spark.SparkConf | |
val conf = new SparkConf().setAppName("Simple Application") | |
val sc = new SparkContext(conf) | |
implicit val sdc: org.apache.mahout.sparkbindings.SparkDistributedContext = sc2sdc(sc) | |
// all this ^^ has been created for you by ./mahout spark-shell but it makes intellij happy | |
// don't forget these! | |
// export SPARK_HOME=$HOME/gits/spark-1.6.2-bin-hadoop2.6 | |
// ../mahout/bin/mahout spark-shell | |
import org.apache.mahout.math.indexeddataset.{IndexedDataset, BiDictionary} | |
import org.apache.mahout.sparkbindings.indexeddataset.IndexedDatasetSpark | |
val rowIDs = new BiDictionary(List("Andrew", "Sebastian", "Ted", "Sarah", "Alexy", "Isabelle", "Pat")) | |
val colIDs = new BiDictionary(List("iPhone5", "iPhone6", "Galaxy", "Nexus", "iPad", "Surface")) | |
val buyIndicatorMatrix = sparse((0, 1) :: Nil, // Andrew | |
(2, 1) :: Nil, // Sebastian | |
(4, 1) :: Nil, // Ted | |
(0, 1) :: Nil, // Sarah | |
(2, 1) :: Nil, // Alexey | |
(2, 1) :: Nil) // Isabelle | |
val buyIndicatorDRM = drmParallelize(buyIndicatorMatrix) | |
val buyIndicatorIDS = new IndexedDatasetSpark(buyIndicatorDRM, rowIDs, colIDs) | |
val viewIndicatorMatrix = sparse( (0, 1) :: (2, 1) :: (3, 1) :: Nil, // Andrew | |
(0, 1) :: (2, 1) :: (4, 1) :: (5, 1) :: Nil, // Sebastian | |
(1, 1) :: (4, 1) :: (5, 1) :: Nil, // Ted | |
(0, 1) :: (2, 1) :: (5, 1) :: Nil, // Sarah | |
(1, 1) :: (2, 1) :: Nil, // Alexy | |
(2, 1) :: (5, 1) :: Nil) // Isabelle | |
val viewIndicatorDRM = drmParallelize(viewIndicatorMatrix) | |
val viewIndicatorIDS = new IndexedDatasetSpark(viewIndicatorDRM, rowIDs, colIDs) | |
import org.apache.mahout.math.cf.SimilarityAnalysis | |
val llrDRMs = SimilarityAnalysis.cooccurrencesIDSs(Array(buyIndicatorIDS, viewIndicatorIDS), | |
randomSeed = 1234, | |
maxInterestingItemsPerThing = 1) | |
//,maxNumInteractions = 2) | |
val llrAtA = llrDRMs(0).matrix.collect | |
val llrAtB = llrDRMs(1).matrix.collect | |
/** | |
invertedScores: org.apache.mahout.math.Matrix = | |
{ | |
0 => {3:2.6341457841558764} | |
1 => {} | |
2 => {2:1.5876494966267813} | |
3 => {} | |
4 => {1:5.406734506395658} | |
} | |
**/ | |
val patViewHistoryVector = svec((0, 1) :: (2, 1) :: (4, 1) :: (5, 1) :: Nil) // Pat | |
val patsReccos = llrAtB %*% patViewHistoryVector | |
// patsReccos: org.apache.mahout.math.Vector = {0:3.8190850097688784,2:1.5876494966267813} |
BTW the one thing BiDictionary provides ove BiMap is the equivalent of zipWithIndex, it can be constructed from a List[String]. I have since become aware that the BiMap idiom would have allowed this to be all in BiMap so would refactor into one class.
The reason no math/DSL is allowed on IndexedDatasets is that someone was supposed to implement a dataframe so, though not strictly a hack the IDS is certainly a half measure but an extremely useful one. It allows input and output to use IDs that are human readable and in the form perfect for use of Lucene as a KNN engine.
good call out! updated.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
see actionml.com/blog/cco