Created
October 10, 2019 14:51
-
-
Save ricardborras/33996c1eb7cf2367ec5202c01e8c3eac to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import torch.nn.functional as F | |
import numpy as np | |
import cv2 | |
from torchvision.utils import make_grid | |
class BaseConv(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, padding, | |
stride): | |
super(BaseConv, self).__init__() | |
self.act = nn.ReLU() | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, padding, | |
stride) | |
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, | |
padding, stride) | |
def forward(self, x): | |
x = self.act(self.conv1(x)) | |
x = self.act(self.conv2(x)) | |
return x | |
class DownConv(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, padding, | |
stride): | |
super(DownConv, self).__init__() | |
self.pool1 = nn.MaxPool2d(kernel_size=2) | |
self.conv_block = BaseConv(in_channels, out_channels, kernel_size, | |
padding, stride) | |
def forward(self, x): | |
x = self.pool1(x) | |
x = self.conv_block(x) | |
return x | |
class UpConv(nn.Module): | |
def __init__(self, in_channels, in_channels_skip, out_channels, | |
kernel_size, padding, stride): | |
super(UpConv, self).__init__() | |
self.conv_trans1 = nn.ConvTranspose2d( | |
in_channels, in_channels, kernel_size=2, padding=0, stride=2) | |
self.conv_block = BaseConv( | |
in_channels=in_channels + in_channels_skip, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
padding=padding, | |
stride=stride) | |
def forward(self, x, x_skip): | |
x = self.conv_trans1(x) | |
x = torch.cat((x, x_skip), dim=1) | |
x = self.conv_block(x) | |
return x | |
class UNet(nn.Module): | |
def __init__(self, in_channels, out_channels, n_class, kernel_size, | |
padding, stride): | |
super(UNet, self).__init__() | |
self.init_conv = BaseConv(in_channels, out_channels, kernel_size, | |
padding, stride) | |
self.down1 = DownConv(out_channels, 2 * out_channels, kernel_size, | |
padding, stride) | |
self.down2 = DownConv(2 * out_channels, 4 * out_channels, kernel_size, | |
padding, stride) | |
self.down3 = DownConv(4 * out_channels, 8 * out_channels, kernel_size, | |
padding, stride) | |
self.up3 = UpConv(8 * out_channels, 4 * out_channels, 4 * out_channels, | |
kernel_size, padding, stride) | |
self.up2 = UpConv(4 * out_channels, 2 * out_channels, 2 * out_channels, | |
kernel_size, padding, stride) | |
self.up1 = UpConv(2 * out_channels, out_channels, out_channels, | |
kernel_size, padding, stride) | |
self.out = nn.Conv2d(out_channels, n_class, kernel_size, padding, stride) | |
def forward(self, x): | |
# Encoder | |
x = self.init_conv(x) | |
x1 = self.down1(x) | |
x2 = self.down2(x1) | |
x3 = self.down3(x2) | |
# Decoder | |
x_up = self.up3(x3, x2) | |
x_up = self.up2(x_up, x1) | |
x_up = self.up1(x_up, x) | |
x_out = F.sigmoid(self.out(x_up)) | |
return x_out | |
def test_model_bce_loss(): | |
# Create 10-class segmentation dummy image and target | |
x = torch.randn(1, 3, 96, 96) | |
y = torch.empty(1, 10, 96, 96).random_(2) | |
model = UNet(in_channels=3, | |
out_channels=64, | |
n_class=10, | |
kernel_size=3, | |
padding=1, | |
stride=1) | |
if torch.cuda.is_available(): | |
model = model.to('cuda') | |
x = x.to('cuda') | |
y = y.to('cuda') | |
criterion = nn.BCELoss() | |
optimizer = optim.SGD(model.parameters(), lr=1e-0) | |
# Training loop | |
for epoch in range(100): | |
optimizer.zero_grad() | |
output = model(x) | |
loss = criterion(output, y) | |
loss.backward() | |
optimizer.step() | |
print('Epoch {}, Loss {}'.format(epoch, loss.item())) | |
# Visualize | |
threshold = 0.5 | |
pred = (output > threshold).float() | |
pred_grid = make_grid(pred.permute(1, 0, 2, 3), nrow=4) | |
pred_grid = pred_grid.to('cpu').permute(1, 2, 0).numpy() | |
target_grid = make_grid(y.permute(1, 0, 2, 3), nrow=4) | |
target_grid = target_grid.to('cpu').permute(1, 2, 0).numpy() | |
cv2.imshow('predicted', pred_grid.astype(np.uint8) * 255) | |
cv2.imshow('target', target_grid.astype(np.uint8)*255) | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() | |
def test_model_crossentropy_loss(): | |
# Create 10-class segmentation dummy image and target | |
x = torch.randn(1, 3, 96, 96) | |
y = torch.zeros(1, 96, 96) | |
y[0, 60:96, 60:96] = 1 | |
y[0, 50:120,0:30] = 2 | |
y = y.long() | |
model = UNet(in_channels=3, | |
out_channels=64, | |
n_class=3, | |
kernel_size=3, | |
padding=1, | |
stride=1) | |
criterion = nn.CrossEntropyLoss() | |
optimizer = optim.SGD(model.parameters(), lr=1e-0) | |
# Training loop | |
for epoch in range(100): | |
optimizer.zero_grad() | |
output = model(x) | |
loss = criterion(output, y) | |
loss.backward() | |
optimizer.step() | |
print('Epoch {}, Loss {}'.format(epoch, loss.item())) | |
# Visualize, how to extract output class from model? (class with max probability for the model) | |
threshold = 0.1 | |
pred = (output > threshold).float() | |
pred_grid = make_grid(pred.permute(1, 0, 2, 3), nrow=4) | |
pred_grid = pred_grid.to('cpu').permute(1, 2, 0).numpy() | |
target_grid = make_grid(y.permute(1, 0, 2), nrow=4) | |
target_grid = target_grid.to('cpu').permute(1, 2, 0).numpy() | |
cv2.imshow('predicted', pred_grid.astype(np.uint8) * 100) | |
cv2.imshow('target', target_grid.squeeze().astype(np.uint8)*100) | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment