-
-
Save ricardocarvalhods/b06c60457320355bfe10c38f38214058 to your computer and use it in GitHub Desktop.
A wrapper class for PU classification on Python (proposed by Elkan and Noto, 2008).
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from numpy import random | |
from sklearn import base | |
class PUWrapper(object): | |
def __init__(self,trad_clf,n_fold=5): | |
self._trad_clf=trad_clf | |
self._n_fold=n_fold | |
def fit(self,X,s): | |
self._trad_clf.fit(X,s) | |
Xp=X[s==1] | |
n=len(Xp) | |
cv_split=np.arange(n)*self._n_fold/n | |
cv_index=cv_split[random.permutation(n)] | |
cs=np.zeros(self._n_fold) | |
for k in xrange(self._n_fold): | |
Xptr=Xp[cv_index==k] | |
cs[k]=np.mean(self._trad_clf.predict_proba(Xptr)[:,1]) | |
self.c_=cs.mean() | |
return self | |
def predict_proba(self,X): | |
proba=self._trad_clf.predict_proba(X) | |
return proba | |
def predict(self,X): | |
proba=self.predict_proba(X)[:,1] | |
return proba>=(0.5*self.c_) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment