Last active
April 3, 2021 00:18
-
-
Save rspeare/c7af6d24730ecca187d0a211ac3aa54b to your computer and use it in GitHub Desktop.
Sklearn Logistic Regression wrapper for Active Learning and p-value estimation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.linear_model import LogisticRegression | |
import numpy as np | |
import scipy.stats as stat | |
from scipy.sparse import issparse | |
class ActiveLearningLogisticRegression(LogisticRegression): | |
""" Wrapper class for scikit-learn's Logistic Regression classifier. | |
New Attributes: | |
--------------- | |
coef_sigma_: array, shape (1, n_features) | |
Expected Standard Deviation / confidence intervals of coefficients in | |
the decision function | |
coef_z_scores_: array, shape (1, n_features) | |
Z-scores (z = beta/sigma_sigma) for the coefficients in decision function | |
coef_p_values_: array, shape (1, n_features) | |
One-sided p-value estimates for coefficients | |
F_ij_: array, shape(n_feature, n_features) | |
Fisher information matrix, represented as the hessian d/dx_i d/dx_j | |
of the log likelihood | |
Methods: | |
------------- | |
This class exposes an expected information gain for some new data | |
matrix of examples as well, through the following method: | |
self.eig(X) | |
The returned value is the difference in Fisher information between | |
prior (fitted values) and new values | |
H(X_new + X_train) >= H(X_old) | |
matrix (poster = prior + new_data X) | |
""" | |
def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0, | |
fit_intercept=True, intercept_scaling=1, class_weight=None, | |
random_state=None, solver='lbfgs', max_iter=100, | |
multi_class='ovr', verbose=0, warm_start=False, n_jobs=None): | |
""" Logistic Regression Wrapper - See Class Docstring """ | |
super(ActiveLearningLogisticRegression, self).__init__(penalty=penalty, dual=dual, tol=tol, C=C, | |
fit_intercept=fit_intercept, intercept_scaling=intercept_scaling, class_weight=class_weight, | |
random_state=random_state, solver=solver, max_iter=max_iter, | |
multi_class=multi_class, verbose=verbose, warm_start=warm_start, n_jobs=n_jobs) | |
def fit(self,X,y, fisher=True, pvalues=True): | |
""" Sklearn class fit wrapper - appends fisher information and p-value calculation """ | |
super(ActiveLearningLogisticRegression, self).fit(X,y) | |
# Get p-values for the fitted model # | |
self.F_ij_ = self._get_fisher_information_matrix(X) if fisher else None | |
self.fisher_info = np.log(np.linalg.det(self.F_ij_)) if fisher else None | |
self.coef_p_values_, self.coef_sigma_, self.coef_z_scores_ = self._get_p_values(self.F_ij_) if pvalues else None | |
def _get_p_values(self, F_ij): | |
""" Use Cramer Rao Bound to calculate p-values on regression coefficients """ | |
Cramer_Rao = np.linalg.inv(F_ij) ## Inverse Information Matrix | |
sigma_estimates = np.sqrt(np.diagonal(Cramer_Rao)) | |
z_scores = self.coef_[0]/sigma_estimates # z-score for each model coefficient | |
p_values = [stat.norm.sf(abs(x))*2 for x in z_scores] ### two tailed test for p-values | |
return p_values, sigma_estimates, z_scores | |
def _get_fisher_information_matrix(self, X): | |
""" Calculate Fisher Information Matrix for sample data X """ | |
if issparse(X): | |
X = X.todense() | |
if len(X.shape) < 2: | |
X = np.matrix(X) # N by D matrix | |
D_ii = 2.0 * (1.0 + np.cosh(self.decision_function(X))) # N array | |
D_ii2 = (X / D_ii[:, np.newaxis]).T | |
F_ij = np.dot(D_ii2, X) | |
F_ij += self.C * np.diag(np.ones(F_ij.shape[0])) # Prior Regularization | |
if F_ij.shape[0] != F_ij.shape[1]: | |
raise ValueError('F_ij is not square matrix. F_ij shape {}, X shape {}, D_ii shape {}, D_ii2 shape {}'.format(F_ij.shape, X.shape, D_ii.shape, D_ii2)) | |
return F_ij | |
# error: F_ij is not square matrix. F_ij shape (24, 30), X shape (30, 24), D_ii shape (30,) | |
def eig(self, X, axis=None): | |
"""Expected information gain for sample X | |
Parameters: | |
----------- | |
X : numpy array, numpy matrix or pandas dataframe | |
Feature dimensions must match the fitted training set for this model. | |
When axis=1, will returned PER new sample x, not for the entire | |
data matrix. | |
""" | |
if not hasattr(self, 'coef_'): | |
raise ValueError("Please call fit before estimating information gain on new samples") | |
if not axis: | |
new_F_ij = self._get_fisher_information_matrix(X) | |
new_info = np.log(np.linalg.det(self.F_ij_ + new_F_ij)) | |
return new_info-self.fisher_info | |
elif axis==1: | |
matrices = [self._get_fisher_information_matrix(x) for x in X] | |
return [np.log(np.linalg.det(self.F_ij_ + M))-self.fisher_info for M in matrices] | |
else: | |
raise ValueError("axis must be None or 1") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment