Created
October 4, 2023 20:19
-
-
Save saharshg29/f1133d8e8d86666294229e405e698ea0 to your computer and use it in GitHub Desktop.
My first realtime object detection using OpenCV
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import numpy as np | |
def detect_boxes(image): | |
# Convert image to HSV color space | |
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) | |
# Define range for brown color in HSV | |
lower_brown = np.array([10, 50, 50]) | |
upper_brown = np.array([20, 255, 255]) | |
mask = cv2.inRange(hsv, lower_brown, upper_brown) | |
# Morphological operations to clean the mask | |
kernel = np.ones((5, 5), np.uint8) | |
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) | |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
for contour in contours: | |
epsilon = 0.02 * cv2.arcLength(contour, True) | |
approx = cv2.approxPolyDP(contour, epsilon, True) | |
if len(approx) == 4 and cv2.contourArea(contour) > 500: | |
cv2.drawContours(image, [approx], -1, (0, 255, 0), 2) | |
cv2.putText(image, "Box", (approx[0][0][0], approx[0][0][1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) | |
return image | |
cap = cv2.VideoCapture(2) | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
result = detect_boxes(frame) | |
cv2.imshow("Box Detection", result) | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
cap.release() | |
cv2.destroyAllWindows() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment