Forked from tspriggs/gist:989b57a495ab2831a021fb376e18fabc
Created
March 14, 2018 17:23
-
-
Save saimn/bc2190e6e5b7a03284ae1d2ac0eec37b to your computer and use it in GitHub Desktop.
custom model to fit a 2D moffat model to data, equate that to F_OIII_xy, then pass it to a 1D custom Gaussian equation to get a model spectrum. The idea is to have x, y and l (wavelength) as inputs, then the amplitude is fixed as it is calculated. When I run it I normally get mismatched dimension errors: wavelength is a 271 long list, and then x…
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def Moffat_3d_test(x, mean, stddev, Gauss_bkg, Gauss_grad, | |
Moffat_amplitude, x_0, y_0, gamma, alpha, Moffat_bkg): | |
# Moffat | |
rr_gg = ((x_fit - x_0)**2 + (y_fit - y_0)**2) / gamma**2 | |
F_OIII_xy = Moffat_amplitude * (1 + rr_gg)**(-alpha) + Moffat_bkg | |
# Prep for Gauss 1D | |
Gauss_std = np.sqrt(stddev**2 + std_MUSE**2) | |
A_OIII_xy = F_OIII_xy / (np.sqrt(2*np.pi) * Gauss_std) | |
check_1.append(A_OIII_xy) | |
model_spectra = [] | |
for Amp in A_OIII_xy: | |
model_spectrum = (Gauss_bkg + (Gauss_grad * x) + np.abs(Amp) * np.exp(- 0.5 * (x - mean)** 2 / Gauss_std**2.) + | |
(np.abs(Amp)/3) * np.exp(- 0.5 * (x - (mean - 47.9399))** 2 / Gauss_std**2.)) | |
model_spectra.append(model_spectrum) | |
return model_spectra | |
#%% | |
new_model = Model(Moffat_3d_test, independant_vars=["x"]) | |
test_data = np.array(PNe_spectra_list[0][202]) | |
pars = new_model.make_params(mean=5007., stddev=0.9, Gauss_bkg=1., Gauss_grad=0.1, | |
Moffat_amplitude=20., x_0=8., y_0=8., gamma=4.47, alpha=2.39, Moffat_bkg=10) | |
pars["alpha"].vary = False | |
pars["gamma"].vary = False | |
pars["stddev"].vary = False | |
#pars["stddev"].min = 0.15 | |
#pars["stddev"].max = 1.0 | |
result = new_model.fit(test_data, x=wavelength, params=pars) | |
best_fit = result.best_fit | |
test_1 = best_fit[0] | |
plt.plot(wavelength, test_data, "k") | |
plt.plot(wavelength, test_1, "r-") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment