Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save sciolizer/22233d10d7435ec4dea794eb6d677289 to your computer and use it in GitHub Desktop.
Save sciolizer/22233d10d7435ec4dea794eb6d677289 to your computer and use it in GitHub Desktop.
<!DOCTYPE html>
<html lang=en dir=auto style><!--
Page saved with SingleFile
url: http://localhost:1313/post/2025-05-23-collapsing-mermins-quantum-mysteries-for-anybody/
saved date: Fri May 23 2025 20:02:20 GMT-0700 (Pacific Daylight Time)
-->
<meta charset=utf-8>
<meta http-equiv=X-UA-Compatible content="IE=edge">
<meta name=viewport content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta name=robots content="noindex, nofollow">
<title>Collapsing Mermin's 'Quantum mysteries for anybody'</title>
<meta name=keywords content>
<meta name=description
content="Quantum mechanics is weird. Why should we believe it?
N. D. Mermin published two amazing articles, “Bringing home the atomic world: Quantum mysteries for anyone” (1981), and “Quantum mysteries revisited” (1990), which describe thought experiments (based on real experiments) that present a fundamental “paradox” of reality that has led scientists to create such an exotic theory.
In the paper that follows I present the Einstein-Podolsky-Rosen conundrum, without mention of wave functions, superposition, wave-particle duality, the uncertainty principle, incompatible observables, electron spin, or any other quantum-mechanical notions. – Mermin">
<meta name=author content>
<link rel=canonical href=http://localhost:1313/post/2025-05-23-collapsing-mermans-quantum-mysteries-for-anybody />
<style>
:root {
--gap: 24px;
--content-gap: 20px;
--nav-width: 1024px;
--main-width: 720px;
--header-height: 60px;
--footer-height: 60px;
--radius: 8px;
--theme: rgb(255, 255, 255);
--entry: rgb(255, 255, 255);
--primary: rgb(30, 30, 30);
--secondary: rgb(108, 108, 108);
--tertiary: rgb(214, 214, 214);
--content: rgb(31, 31, 31);
--hljs-bg: rgb(28, 29, 33);
--code-bg: rgb(245, 245, 245);
--border: rgb(238, 238, 238)
}
.dark {
--theme: rgb(29, 30, 32);
--entry: rgb(46, 46, 51);
--primary: rgb(218, 218, 219);
--secondary: rgb(155, 156, 157);
--tertiary: rgb(65, 66, 68);
--content: rgb(196, 196, 197);
--hljs-bg: rgb(46, 46, 51);
--code-bg: rgb(55, 56, 62);
--border: rgb(51, 51, 51)
}
*,
::after,
::before {
box-sizing: border-box
}
html {
-webkit-tap-highlight-color: transparent;
overflow-y: scroll;
-webkit-text-size-adjust: 100%;
text-size-adjust: 100%
}
a,
button,
body,
h1,
h3 {
color: var(--primary)
}
body {
font-family: -apple-system, BlinkMacSystemFont, segoe ui, Roboto, Oxygen, Ubuntu, Cantarell, open sans, helvetica neue, sans-serif;
font-size: 18px;
line-height: 1.6;
word-break: break-word;
background: var(--theme)
}
article,
footer,
header,
main,
table {
display: block
}
h1,
h3 {
line-height: 1.2
}
h1,
h3,
p {
margin-top: 0;
margin-bottom: 0
}
ul {
padding: 0
}
a {
text-decoration: none
}
body,
ul {
margin: 0
}
table {
width: 100%;
border-collapse: collapse;
border-spacing: 0;
overflow-x: auto;
word-break: keep-all
}
button {
padding: 0;
font: inherit;
background: 0 0;
border: 0
}
button {
cursor: pointer
}
img {
display: block;
max-width: 100%
}
.footer,
.top-link {
font-size: 12px;
color: var(--secondary)
}
.footer {
max-width: calc(var(--main-width) + var(--gap)*2);
margin: auto;
padding: calc((var(--footer-height) - var(--gap))/2) var(--gap);
text-align: center;
line-height: 24px
}
.footer span {
margin-inline-start: 1px;
margin-inline-end: 1px
}
.footer span:last-child {
white-space: nowrap
}
.footer a {
color: inherit;
border-bottom: 1px solid var(--secondary)
}
.footer a:hover {
border-bottom: 1px solid var(--primary)
}
.top-link {
position: fixed;
bottom: 60px;
right: 30px;
z-index: 99;
background: var(--tertiary);
width: 42px;
height: 42px;
padding: 12px;
border-radius: 64px;
transition: visibility .5s, opacity .8s linear
}
.top-link,
.top-link svg {
filter: drop-shadow(0 0 0 var(--theme))
}
.footer a:hover,
.top-link:hover {
color: var(--primary)
}
.top-link:focus,
#theme-toggle:focus {
outline: 0
}
.nav {
display: flex;
flex-wrap: wrap;
justify-content: space-between;
max-width: calc(var(--nav-width) + var(--gap)*2);
margin-inline-start: auto;
margin-inline-end: auto;
line-height: var(--header-height)
}
.nav a {
display: block
}
.logo,
#menu {
display: flex;
margin: auto var(--gap)
}
.logo {
flex-wrap: inherit
}
.logo a {
font-size: 24px;
font-weight: 700
}
button#theme-toggle {
font-size: 26px;
margin: auto 4px
}
body.dark #moon {
vertical-align: middle;
display: none
}
body:not(.dark) #sun {
display: none
}
#menu {
list-style: none;
word-break: keep-all;
overflow-x: auto;
white-space: nowrap
}
#menu li+li {
margin-inline-start: var(--gap)
}
#menu a {
font-size: 16px
}
.lang-switch li,
.logo-switches {
display: inline-flex;
margin: auto 4px
}
.lang-switch {
display: flex;
flex-wrap: inherit
}
.logo-switches {
flex-wrap: inherit
}
.main {
position: relative;
min-height: calc(100vh - var(--header-height) - var(--footer-height));
max-width: calc(var(--main-width) + var(--gap)*2);
margin: auto;
padding: var(--gap)
}
.entry-isdraft {
font-size: 14px;
color: var(--secondary)
}
.post-header {
margin: 24px auto var(--content-gap)
}
.post-title {
margin-bottom: 2px;
font-size: 40px
}
.post-meta,
.breadcrumbs {
color: var(--secondary);
font-size: 14px;
display: flex;
flex-wrap: wrap
}
.breadcrumbs a {
font-size: 16px
}
.post-content {
color: var(--content)
}
.post-content h3 {
margin: 24px 0 16px
}
.post-content h3 {
font-size: 24px
}
.post-content p {
margin-bottom: var(--content-gap)
}
.post-content table {
margin-bottom: 32px
}
.post-content table th,
.post-content table:not(.highlighttable, .highlight table, .gist .highlight) td {
min-width: 80px;
padding: 12px 8px;
line-height: 1.5;
border-bottom: 1px solid var(--border)
}
.post-content table th {
font-size: 14px
}
.post-content blockquote {
margin: 20px 0;
padding: 0 14px;
border-inline-start: 3px solid var(--primary)
}
.post-content hr {
margin: 30px 0;
height: 2px;
background: var(--tertiary);
border: 0
}
.post-content img {
border-radius: 4px;
margin: 1rem 0
}
.post-footer {
margin-top: 56px
}
.paginav {
background: var(--code-bg);
border: 1px solid var(--border)
}
.post-tags a:hover,
.paginav a:hover {
background: var(--border)
}
.paginav {
margin: 10px 0;
display: flex;
line-height: 30px;
border-radius: var(--radius)
}
.paginav a {
padding-inline-start: 14px;
padding-inline-end: 14px;
border-radius: var(--radius)
}
.paginav .title {
letter-spacing: 1px;
text-transform: uppercase;
font-size: small;
color: var(--secondary)
}
.paginav .next {
width: 50%
}
.paginav span:hover:not(.title) {
box-shadow: 0 1px
}
.paginav .next {
margin-inline-start: auto;
text-align: right
}
::-webkit-scrollbar-track {
background: 0 0
}
::-webkit-scrollbar-thumb {
background: var(--tertiary);
border: 5px solid var(--theme);
border-radius: var(--radius)
}
::-webkit-scrollbar-thumb:hover {
background: var(--secondary)
}
.post-content :not(table) ::-webkit-scrollbar-thumb {
border: 2px solid var(--hljs-bg);
background: #717175
}
.post-content :not(table) ::-webkit-scrollbar-thumb:hover {
background: #a3a3a5
}
.post-content table::-webkit-scrollbar-thumb {
border-width: 2px
}
@media screen and (min-width:768px) {
::-webkit-scrollbar {
width: 19px;
height: 11px
}
}
@media screen and (max-width:768px) {
:root {
--gap: 14px
}
.footer {
padding: calc((var(--footer-height) - var(--gap) - 10px)/2) var(--gap)
}
}
@media screen and (max-width:900px) {}
@media (prefers-reduced-motion) {
.top-link {
transform: none
}
}
</style>
<meta name=theme-color content=#2e2e33>
<meta name=msapplication-TileColor content=#2e2e33>
<link rel=alternate hreflang=en
href=http://localhost:1313/post/2025-05-23-collapsing-mermans-quantum-mysteries-for-anybody />
<style>
@font-face {
font-family: KaTeX_Main;
font-style: italic;
font-weight: 400;
src: url(data:font/woff2;base64,d09GMgABAAAAAEJcAA4AAAAAg7QAAEIBAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmAAgkQIWgmcDBEICoHQZIGgdAE2AiQDhAwLgggABCAFiHIHgxcMgTIbxmlFB2LYOADg423SKEoWa2UUJZS0W/H/7YCDMQRzoOb7BEQo9UW0o+Nvq6XQ9C69R8s62L8g/NwIr+M4XlUdd07swxd2sLCFh4CH1W1dz7uGbB5epsGsW1R9zn9YC0+ijGJMO0Jjn+QOz6/N/37dv/59lRxHX1BxTRxxcHfQkp6gYhRGgeIQE124xqilMafTBYt2m7EKXQULFw38/3PU7rtvxldb9gyzOKoRDiQg6oRpn+fT83vjlQrMbKaPx3dJl6y4n2rqO3Od98sDK69sOQatbOlHBmqsxA7yrMatPrHKIF2llhdMCRu4BIYwjHadKiU+XMhUWdoPBZqILFlOwbdsp0xlSr7/2ttlbP6PC/yfunKvlbzdgJxDlVPpUqycw+uvnWk17Z/5AxLBh0AC5EMbWZu4KfOOgXGunfzg/Ujp1tumwWAcxi18PDiMQ1uCwf/Ulb5AUQEp8JR/QHaIHNLSIegHpVvfFvUWZUZd9eTjn9/fe8/AUm4b1L7gB2hkbfP51pr4zF3TkMgkUlrB5XXyr/8fbWYX85BWEuKhnJXA/2/T3va90Qd5QtoNeRXAjxX3IajSJl1SNCln3h3Be09jW28WpJHtrGb8QaMFaeT9sUdLggUt6iOUAQCt7IUjL39CroIlAZYpynR1fhmqUjR9inLLhNvAf3Oi/e/fHYVESJcQaBMmpmbk6LZmTboFKycRAuvvtjGrwW2NH4fnNLIxIoSA5XvZH1O+G3pz2uUAGQZJICnBvn8MIBgczm4wCILHfRwI2m68bnANZ2BI73oj0I8r9P0vdN5EnnUqHoxXOWKcfFqd5u8LBO16LwSB894PBBlZXfwIRNnEQTUKBQ5a8cXVCYMIyEIRJbTRyWrWM8kxTnCOF3iXT/iSP+NM1Dxf9FXf96Pe3H29s/d0sgd7pMcvrFFl1JnkM0P6rkmihDI66MbDDS/+BV/2XT/s3p0e7rELY1QatX873D513TWf+NgHzjvtAYftc5Nha8zlGvo/67/9n975+37nb38yFrSZWw1cS1zr+2QpBCAdU+7ynAKCOTOfnm+NOBRDlDTA++d3H835ZEwpCD0K1tG/jfv3jMKkdBCK+54Cq5eQ7Fwlfv/TM3uP9tcwQoq/EI54RQihdyhHxlpCLYT80m0hwB9cSQAa26gkDLFiSyJAc4Ks3ylchwwRgsvwesflpKGfMPfGoMQJsxMbojfjFh4MGBxNs0e2Kb+VbUz4HqGQJ65llAkoI8VQxB9ryyvcL0LzkCRHz8og4kPtcg0acOqGV1V+tnaVsjfsEa/ejmRCd355zjep2Ri5eaEeFMw3J+W/KrJKx4Z2CtmUkORgDjiaysEIaTwWkIgGnxkBTGRKuSg3EVQ7WhAOSjgk1OAJhQ/UulFDkt6tP4+XpAxhDS8x6VFtohJkCoWB9MwgT3FaEgN6IBqxAQXc8hS4I+HOWNtpt5J41BVG6WTBxKENGXXMjILUE4TbnCZ2ZltOPJGM/ycmMjvGSUTLtg9bJu6oF7UKeu49M8NOaEDDlRSAQi60EJxsROQK3QkIpR1FwpMRwU+CgrPZFAI+e2QcXqLSAxyLnqYtjdCtViZCK1wTf8/N2/xB4tJ8ikmwkiCl6iUaAb1k6amFmAtIk5apNO7RE7cEkYjFuj0tivQpcVpHMVRxi2RkXKs6ka4IUlveGrE6b2WAHBkeVPaF0yVJzFGAKefKc9S/jjslacMNnBQNUQbJ2KwKl6j0JksnxYDUZVGqDckqaazu+YxOuzpJ6UzGe5Tx+7b96u4pbuzsY7bNIkN0Zz9K5x6C7kiljsyBw2X5GZMDCDYFRCKxHEU30XBpHL2nyTMr3WFLzIAQrGZwzVXKOSAJaq1MyqpJ5IgZgm5Jl4CESlugejnLOBQZXHuetDv0KHNHqRNuDuFCuT0BUcWtwjnHA2IbE/TMLqRx28LeM6UcHhniFh5IIQGklGCkkhCkllCkkTCklXCkkwRILxHIIAl70yAiNCXeVve8oCL4nDMHLZneZkt+s98nzdjSttnfm8yIgmsG20fQz05ElQSJTdiIzdiwBRu2YsNJ2LANG07Ghu3YcAo2nIrNzgTqvEVZ+YHKho4UWSexZCqyzMId4ACzklln+jgngEFlSS2JH2R5rx7GDAfIpR2tLJurZTcUnWcZ042ef6GhcneU5gBoZwNv/e/JQaEWUolNgvSocqMF8aeQ9nS/yoecrVzAb5JcoMYgiAQhv92LSuahuleXzO+QJuCwa2ABMiz8FCo1CVnmzJ7LaXzglxPhj8zaO9Bdm69g4/Y85ReCEE/FHkfjBq0TWSLFhmIuHKdMB+qUD0+haCwq1N2Ju3Mxwa6VZaDn1p+gdtNocqfcVKtbb7MiIlncEtIPtkBOWhbWPO1tUwOUoRFijI2ppXg0zMJ6V9YxGQUjOUX68YOZTRH7b7cMEan2NWDLRFGps5CSJBYxK9vWJFqGIgVF8tB6Ohvh7lqymBGK2jisqITUHxq2LDEoAkX7QPomUnaUAmBMGt+Kv4OYr1CLNZETg3c62i6Oh1ez/B6MlsqKJR+SjHnmd5Q9QILQlYV3c8qOPJxoxwNBxaWSrVpBv2V21KPWKjuUXYg8ufd5d8zWwn0IVbu9yn6wMPvNDYBFmYwrKbT9mPI7KKE0KzrGUNCA+CKNFf4TkZJFiwC5TSuoUckHEncIWTQK13FuZ/ZvxaCUSWBkNXvZWj4YWzTjrHqLKJd7UeHODa14yjrOyo6EVBIJXI1xk1+00DyP3qr6Q6lPS21wfTEjsDEMO+nGIqN/UHMi4ksogH4KcyZai3kdZ02h8movtggKKR0DdRtAz9l9IOUeDKVhAxg57/HiCYIgvzAJoGkHmEX2HGzgheOlgVcGe01M0JuxEdEASGdTQCpMDyWmAbDO4bwjYH5eJHQAMXIkNRRyACkdQI38tcWMitN4dNuXmSkNstuM/azI3db7B4CyC8IpkPtDJdh4WYKfJSdQ887tuuuuQPcFz8N+lfKYpTxlKc9ZystSei3QW8HzDlcZH1nGZ5bxlWV8L6WfAv0WuCT7D6eO37897ifw/akdkWCzxRqr6kvjwecJ5BEZv8luUrKGAJSZGeSQbtsEBQAODXMBgsxPQJC9BdK7YCEImQ3BEId3L3wBCWVBWg5eSBVrYyUFEG1f3S1S18ySTTXunexxeevIit6XgnFQKvjx7+BRlJPo9QuIQgXFrJPr9cZomoGSUJzKNX9WZU0OH0hm2QJaIpEYpJJySbeiWpzHM8F0zbx5rTtLS8bK+vt4TZnaaRB3azrqmoND431FWq2eyVMl8bleZYY8WqKolhRKCgYylzRSiiouV1kUDNWVdHTVNtnEUkqSvFvmYPhFAYrKlNKFg8oyhirSKyie1kooiY3jvCzBs7kNKWlZiUDHXIlkQydLqvQajV5vs/vJHrdjkT1qjvgMiqspEBarIrDQ9yF9LlgDzSDLhLN5fxZjDbSAQqmWSQK4xBBGBdhRAEixYsKODTZ8ac0INvYQ5FIqlZ6nt782jlgDt2D7ArUCjSQ+wQoJOE/mhJofPoVDfSQ4bxxTQbgk7mrMelYkX8VYozL5GDQRmYOEUShoeuEvf3FpgH//O64dE+7LU1JqqSbfCoY+MLRZXNIolYAXhTIhuO8jrfp1XkH0gYQwW8IIB2ZhP+Fjl6Oqvoaaj1VPmU/TZVKs4puBzuH+47TDSHxY7f7okApiaE0YbLyJETPbnZOkJAqowue7bNSchWCHz1dLy0YqYZiSnojjm3ShCz+nbfJlDamA9htVx6iTs4SZQVTBBWjmFf5jDMJEgiJcdBL3FNKAPQriylxKzO+6KKFARiGV9lKahL43gJLk0BBBR54Jh4N9qeySTH7O5rqPLfjNr1dj9TGBgvvwFKE6evdTnfsxP9pNz210PUf3njCBaprQC0hQG6ZAkiBCwXtjnAqc2u81W0+5zD8pG81qSkHyK9xTo+uS1SuvhFJG8bCaq+XSaFHEyXEnYrYnQXss7r8qkPHygY49ZiCyFAq64/PlEP0PK6xoz//zCkwdOkuyrNEoc/hq9yd0BWT10l1lMBbjkvCOkUpdr3L+UJQ6s6RTTRSeZoqx036yEk0HhDrGxiKRa6H4mNHtMbGIJbePj62+2F6jdmQgt5sGg+GynXnaHl+OYVPrXaoPDAh/tul3Wi+FKKAiJskU02zfk2PDLhHSDd0WIi78KcTgUuCOTgykNd31PRvDKbAya0lGTNekB1UBNAeGrf2AcLEURjSgSm0RiYa6j1wgEyEQ1EmStd7pplx5BTTQzbaT1SN7/POEthEsfkrYFHE5ijE1J0yuyu1IDvqklo+D9jYAykSBTVwEpWwwN709dKMrD9qYm7YqkJ2U90uyqkR3RYRxSWowbrhXq1nZIAZGemfBGRYjYYZu3eJoIDkNCSU45Ijt555HOyTMTGWG5sywf51uwx2YEm4ZYZims9jz2eYKkkgWJjGAT6FRwhsm+2q9sZqH0mRNW0zdBoOlGMyw81l5NgItFP3dCJqpLTMBUqiNMojfQg+FNCGsY6bJBflEt5AJJUM2RJtqvWcjuqw0mItEOXzUwMx6uBtrfY1ExGYxw3JCnG3vYqy+Rh+CwkbEqJGzm97wE1oqFf72ppsIZY2Rt+8p9IUDdLADCONbQXlNNopPwQRVaoGNEs+49iYjzCQ/kEEedaaC3FyYf8hSsZGw2ErCMgUuBRPjzi5OPotsJ/2/QG5rZ2Phu6r/RbF8kq/GM5WFikQ97O/3IoP6oCwD8pwmiO0kmhiulKHupOBHcADnfm1dzYkuBr9B+JPEQBLWiNDlobpT9HFwQaKv/HKSgqwk3KM1UtnbAFlGOSCXCUq0DHIsS2/F46RR3AfZp83QqZAUFAkcep5M0VCsu7W5R5y0pPtRG8WHfJDSyAcFyOpvTy3zXbyWgTEvl/1/6ZHYvwUKLDPxoT8ZA39eJwK1nsXQBBXgD2XfIUbDijU7QUW7R44uBScng4BQuhTsGgo7zFVska/2DsIOQrW+WkY/kRY5w4kIhMPLUE4J/L0ui19LiEm8l9kuqU6JOAo55Y6d62EjSpRg1CtdNu/yn4XmpU+z7di0npnIVjgxZZnNhKERzuGLIFuBIvhKfffMtwqI0UVEqwgyZoovTEXSAHXo5xLsux9uuJ+nYHW9P7+GqGIEu/zSZOm8tcZTSBPy0kTPVIts9vh8IQIFVhAazDyUF2Cs9jT/ceIeQkK3izWx283cMFqjBMWpGY16LMzA3axltncVwUC5oKjfeGYLeckTYVMja6uLkp5FLKd9H98g2xVnUTpvb5d0wRbxUuxMc3/UniH3F8clMYEusE2kerUMeNkPgtiJY4FCWuGiNMaqGLxpBbFffdOtJDJIuUd3u0YHrTTI4EDc7h6d4qlmMCzVaUoo2H6SVH60Kzsv6aeIe5rlMqSirqpTXZO1FaoSB+Hh51R26c+BcNzsHGQVZ/IIyyIGVa/Mc5oxMccJ9YtnocdDvmc7DqpfnXWa6R1Pa7SDIk4TAdaqhOixUVURrZx0ld1dwRBX5r5AjHjpZZUfoSQ3KtH9A0B96eYqZxK93d3Y6HgGjZa303zYPzKlNBzh/F60Ii6aW5pXNv8mqESYZjiFeh5JjA+AIqXzAMitT2lVoXkkvvqGd8OWLrgAtvj8f5/PxP8ryT+QnTvS3xUFw8Tt+IuJj0wQ0MM+YdT3x06FjQbDJtgF+nnvlA+BpE1irK9LDXe2NPqjmo/8TTQMe+mC4zgl5/O4AHTLjlGppYzNtu/YF45ipyhR7Dgh1GIAS8F6j2Rzu4WkMr0jkik4XmZRj5Anqflvo6OqJuOVl43QlWmYZggrLzSvSjMz6QHKF5FzZizIkj5a6XCIiiCqkFpGO5uLICUE2PIhLup+y2MCr51U7xFMKsWRH1hmEEMh2h0+aII0baTDtk/ucm3idbba06SRZOvbldan0Q+6bnUux6rqFybIe8Wu2Sa5bxFvB8X0esg5XFtxzhdxak0mFksedTLCINwLzYWTDUVUrUFmJLYR53RoQol/4DFFaBmqcpKX3GJZbInR+cj5oPxtslkvzsYpGBLwyWzIKQItc0p8TBgsERTdUlEk3M9Yxaq8cVnTp+mOHprHZ+qZMAjRT61Iv1Y0G0zp+Y4oL54gYZjPpGIQINc80Y/JwR9OgZC/2xrOMOD2QcuQGzD9l32jMGc0DOern4yPOor0aIq0b5r8BrdSmekLqFDLYL8rVVUQXxPkCbrX1VN1leTQ5oZ7mb15FpRFOqXISsxxVF7eCwKej1retf18yjTAmbeP0UrZzBh3hxW/1+jLF+eT7z54IMk6TnSn0vxx9BpacF/EGAF/a6Kp4BDIT0/yu1c2ds70VhZ704aYvQZ//IUYoo8djyZh9KveAoRLZECeKXV6GPNDflaSIga93qw3HfqgwHvNQFcFPsAdSmGIHw5VrQrH6lCdGcgIEn7mEgxSCK3VGjPxf0GHsLS7Rv9DKazdDcupRXIvpBdttjuMHNPp/3ZteeN9mKaydIRRzgSGApmoMGHb0U5RDwsatUwWvsknrIIGnnd4gyaGiPyfZWMJG+fQKYduGO7vg1pEBKeOVCCVSnTrz1p4odVJB2Pf2y9y5clGm4oxsPzU5MDx6XeJjxmX8YibwfM0l3lneyJ4BdubDhKp32zHfaplxs3Y3oX3PNuO5Rkw6HTgh7JCkX49sLKF+F0JRu/3/JctGIoNGJhxgBSec+ugCu0dGaxYY+MmLoaqGQPKCHwNhGluuYXfTaz9scXnN+5GVAEXifsYs40kQfom0M+z/iahAdSspYXnPSvQ9bot1SfsVYwlBr/OPjoBMvFUKIzAMCyWPw9u4pgw6XV8i63smNnPJRIAVMSteM3Ec+d2hAaY6327Rs5bcojTKfATBa0pGClJGWvK7+Z2FPuL19xYR0WJVGbEVsNSg/CQZvnnwRxpHc0r0EMkWpOpAWU82uFwYJl0iQSztxFffDuCttHxyGMiaQ9hZ5Y5HFv7YVucMzXXU0kSC+sv8j+zIV0CdB9XexHFDekSeJG0Cl5hYjmzEatIQdCXR7eFRCwuDIlkPDBL9nWhSNeoBZdNUVMymCYANZujP0NW9c0tjZmAUQyUniZtug8IH2GcKlldHncqBWoRX0w4WGCqCMJQvTLfp0OepapUw2x/e7xE2LQtYXxKUT9NyJYgmFmszDXpbsg5s3K7iOyFRbePhdNxtu/udyBhPogOsRHf3JbjNR5uqPpGiK0nO6B2wZZsLhy3kTPnGyYgMxM2vcgieZXT/tb2zA7JHqQyCbktzKeVyHfAj+BEm83WPAfQu7lkCUM2favHvMv44vWFc9DjdIAaqXFtm6ARU9ezDvNf60yRueHnEhH7phGoPLKcy/mOXLBnVrvT6Y1Bd2nGshAnG9dJEkqwcfPI2mP9TFkxUkqcrnhzonmI6MQ5YYfMd971hGCt6iWWcNtVuMVPMdJ766H5aD7KWScoXEf6B2p8fHgYJVh7fDmNUOW6jazv515lBG6Qo4J+Ent5emKs3rkuNcxCY6AzpFI6OihFhvvXY8uRArDzZi4w1sUQBP5DFq2S+3TwJlsrLxwdS9MaRGXZFXoVwiiFQvTU0N2vW+Wn52hv03uigk1NLsn7XFUPPmXGnY60Gj4IRQCKUK3rAXVozLGqrqG/eepB+bPq4W4ev4OiGA+je528GaWg/oNEnqCC+rnieZr1RYQd+QnhPVIx+ohqtWRCf9prSc8MbEix7r1XJ5cLdJGWGBivm3bodm7UyxotLSYEphVRZvv3a06MiZxmSK7RvQm6b6KvMRvZnp5symttk3UWqGUSLbIfntsi/AXASR/J+6rvFf3kzMINLNBh7CHbiaQpkV/KT6DbxwFZee3Q3/br2JKFNMvy9cU2sh3QCxuD5LjCjd2lpkTB0kYuJQdIYkAMT8SFxJCz4M/qCdBujHNdoJ7I46lImhDzY2tGIKaWPWvzgJE3Mav4mjd/RgzZNFEUnqsstZ+cEa3pJoy5Qi8DHgV0SgrP23TaR0KGYol/F72TbFOwjsZuz4Mt1JFxB4UUmoZq9LjsrSj3mPBQPvNazieLkMjvYlhHRx9aU60JlTdZ18gM+63c3+V36qTHC/X7dYnYrKq/cekmOOJPG1CvhtRyQIEVn22NnEAJoiibAzRvOtcE6GRO/yj/8N3EWEqiP2YajFXCRBQNn0qdSZrkgvVqDTlmyBcQJAHVp+1teRo6YIxh7c6dLdUwUU832TzoLDNawtHdl81sa+mJFJeuX18zvzkZuWcKwxCjqopQI69FezqpJWcg9XuPi8yl1WvCVkkfTxKPA28K3P79rEjnMq48RuBwV3996+m/UuuNmGMC5pcFQyeC3iFVyBO41Oa9R2kmXZIOs3R+0rVBGF9Ee0VpM+8WEy7UC3YKxrnUPYcxO3kNQsrbIF1/P4U/KDdbrLBf7UbrB/Id2+ygatZLDI9JqxmRcVv4ohNKPkseS+vNrebioaQgMdWpPIdZoEniPPfWLDJpiIiYJSayVw/BohsPUlRp9cMYFskZOrv3exHyFZYzKtNdE1rbo5TbLNY5SkdzIvWdz/MRxNvkTn4r+bo2vx5pfxHB6lT+q6KEpZk+Gf1iOlwwE88nqyMqyPTy0WDmeQnPUdEBLBZhjLCgQzv/i1r0In8eV5bAz9/yTbsMTS7hLLU3Jyiz4tQcq6fCrH6U6m5m/W6fYJumR3oNAKjEbxEQz7QDgP79Ln1+ZYH5l8I3uznqJNVQI6rUqksmajEp26AosDFkSwnHUUNBhQSEcBAJwzgVp6S9x4PfZhgQTvw62QyOQ2GW2Uw8F9aWStgMDorNlQW/RqkN8jNc+DFFP2fdC+2EKCkCf49JSIdCvfqcyPiYfVm4zL2LnzKfXAGSweSesRd54TiXzdZdY+Kbl4h1MLpdI6QU6teZAnSrM9bUcl2YqjoW413Vhpp0Ig+nq9dV11jVumr0WfH9X/wgzuDnJSedyE9y+cGQokfKzA4KPLR6ybECS40rG1/3M5VEsL+/px+rOcRz8pKuCjvOM7PE89IkdBHJSDfB6KYznj9MIrWfEDa5SjP+QNg3mxbYm2eT7lfog0q6uHluFxEjzEAMpsrMVEus1AJeOEZAGD+8IosLI65YVbKS0zQr6r3b/TW71+Ovsyuf6LrDqn2n/ZTsMsb6wCn7osLdj1Ng5Q730oSq14NakmhokquKE/Icx0no/zNzWrBG+zAdYgsl2O2KyAzDCIKaCsYlsF4pj5PUoE6lRT6OaS0RAcQ4I20uCNJ0P6OVoA18eYOWknWw1Mmwlxzpj/1z+F0mUB8z+V+SkSseJ5EJh05lyrgQPtVf9ne++XTUncsMiwh3zLMv+WAviwPdvIZWm+BNAwq7siV5gzxcVmy9eF/14844kuYcDrRLI4qFVENUKAfGKaHvWhA0r8xQu6DHjTnw/WyBhjoRdeQk+/rpjtWOpb1n7IjbPQ2Er1deN3MsR1c8Ydv3oHFJPbz43X3pK3WKV3j1RzruPCEoVhzj9RcMimfUQl7NtnjKty+69YG5AHs5kKetehx3mM6ceexZB+CzjViyT/TXw0nVSWEwO2F6RCo5Y1q8qOaeyP64kHiSQLybZkzBQTB8ZCJACN5fEUCqbqm8uQaqfY99/ljVb/TH6bj/RMvC2nuG2R++P7zByj4TWabm8B2RxXZ2S2019OWHjx2Gv/8Dnmj5ZFClXP9rTnCWsqtH6q143VEPC14RIoCr3VS1lvLjxOMEzFnVIc4L9kIO931f0XXJNZmzAly3nKxXJfuzSQyvqt28oyHw+qFnXl5RxkSogJ6wfjQ2JfpixZi3lFpjkOKpKaHcKs82/k9ToSa0zeRxL0uYG9c2p+LG7LapJ9+dMWW2nfltlsWfXCNdnKZ0akC/pThnbPSJRG4rgCWYTEEqLCZxqranJuDKDAU1FLft3MHbqhblTn+Yr3+P853Z1qNQqqWNC8f8ogmhM9/jss0YqD6KfZCtR2BBKp37338wGUhtJZR642NKzW8a2z/ESTy5EOUapowVbaFaX8Oq9LRd1zLSb1RpYcGNT7s57CUT1WCWKycNLKv/KI4BwMA/E2lgaErV5of+uHLL9mYEe+yrtseEn2H4T3995NrXWks1OX8ZPVbR6M+QEF0WDI0uGwgdrb1ATSnMtZq5P2djBIub//p2e3UXyKcVJnce7vOgmGSpP3xqqGbnjdEj/liFA5+eI7+PBA7g2Xc80n9XMDH0LFgE1zOYsvr0I1evfm1swEUzYt5qkMv1cGaGOyCVHZER0boaRFJ5RzBxgYLFH4pA1l5mbX2DQK1VMxXtW4OG9VNl7hD+mwVFGx6RwKX/2+HNo87DysPO8a0I7BchLWLivBA3DhtHRkdNZ6TiM6bxcdOY6Sb89MpsP61hOkpD16KiT4lj2nt2pRUB2PS5RHGU1+aNgt14zd8JBH2KZic7FrvcCNbUnMDv4s4rdI/puVd43St44Is8MUS9sPnZp3Ka6NeV//w/z/jd+25+2KOZZz/oj7k9FfRy1Rh6KO+8ejS5MaVlbeFXb+cm3W2QYQ9Nv+q+Yj+UbnhvhYfVuX9/1/WaYd0yG/HHt6xYtgE1wuMBbU7FKuBEZeSeMCLoOgiZm2FyMCCmW4DZFAdmMdwPOHUB29W//BJY9hj+Tp3qZzWhmFQ3jEE/NCQHG2dVKVuP507PKz1W8pN3FcBNbSGpgfGcvTxZFBArAnC6IpZ1zqnoRB/sOyWUDn2/vwjmOHKoky3vW1ue2pD1z1Fx9SylfcQqPnWuLj7rb7V8rrhBNwcRygcrGFiPic/QcsWXJbVXcaYMmQeQk7ouRzuv2KXgKis1530K+QfZDH0nLV0795VjmPALmTlkUd/Qk5zY48v2ZIVyQlnvDfGK3e97Kg+/9XVD2/b1TUSXLNeX+xDGNpZYfOoflyC+92w57/3E1D6jdu6oh3ASluH/HjLdEYBXHrEX1Gb1mH5DCMNk4PK5lnnvW2W0FKBgtjocv3H8+BxZ2rs8grG1pH/l0EeMNEtCcK1cMwQLdWMjvlV3YoJf15OU3P/21jkfsTr82aw+DIlF4fw/Cjb/9QgKx2Hm9ovtGY86JZpD3Wha6p1+Lt5fmOf13aJTJrbv7yARL1YQLC/t8jNxSmVVIALXq0n4ZZHmba6FClgNRzXlOYE5Xgl+SZ9KAkuA+l7lePu6dQGMDeWVViYFw6nKdqkvv1Uw5StMerBbywgrDBn3Lp4VKqgQiLUeBWq1myklHbQ/o7+sE5xMKg4VnmQHVEaB3v6Shg/rH1tKTIufM876TM0UzGl6cR5EUTTACDRv2dljJEXGkc9Nrl15EbFGE/UfMYkyvR10romK4AIyjqB3H77R2rn4IqVMZkRe18tH8En83ttLwmX5s+b495yGulY2+YW8zNPW94XIml/tfL9PaX08qX0w74VX/lSry/+Z0/mN5yV3rCJL2l399k31sYAxmoEU6JLXGP9Oi6cUtoZPYaRiUSvV+Sc6UelUVY2Ljm2lAiS7E3ViXxFq2amaDz26BJaKwP7sSnU3ZSqQZEWd2vvZ+P0VoUoCJvF1+LG4YW76geU94cJgeMMCmdBE1N1dVeRsYddQQa5NZ4B0tul3DSdMxNc53AVW96qOe4XTfTCQk6Vl7zj7+GO8/n59ZjHfxkSLylfRzs1rViPI/zNxsxRaGbu6CMdwgv/aYnaWt7TFsvma993K4jykPuS0WIhvH6L6SLTs39CcJ/6JOn/OKQnkK5v0L47FPZ8keK1Czse/v4vjyDgimvj/rEXzrqH4Tqh7vu6TF3ccSSI1Nwq0Wd1v6bxh7y1FapdjTYH+a2j/OWk+IXkRVTUqG0I40x5bUS7+hXI29qbd9uFIfWDhoZeTdZ+1i9pte1X8BEJs9s51DclnZ3auWinpIowmIbWza3mStzs6Vwxfw1b4YtmhThXnsw97U33F7txKFAC/a2dBWVVrYMEdD7Uk33Wy0kEwQsy0yTjqyAvohMa3L7ZZK6vqVtxKKd5gjvHtfBtG2ghE+rOieOqn/TjaCnHUZ++3QHCkhaS9JnOcovx0pRMCyzOpGF9aHJdeb2BrIJokEA2shK2OLsyjwNPRirf/1MK5hHpCkkRnZTR+iwDBHsEugET2RG8BHR3E+7cVxx89A53sp5m4gtV2XuusefjA/vxgeQ4X0/TP8slnLzoAJToxKHSmx+dBZQLj7ApmPA0FAI7n0TH+7t6qByJVtEcBJvOYol8puLoampBU1OxRrn3K0doEweYd5m0AjUH+k796KmaXpcwRTX0fLmwtm9PeDBsrU3qECQHfOkVVRdZvVjakR+Uch85RNwxvbmBHzZpIjai/m6m+ycYpyK2dS+1nEvElYtK8KCTNS4LD1b7PMMKL8WyDnIwLOEkO/t5txfGHT3c1CBKbZy8tGSya05p/NijeeBrqbN3Jsziw+8HgJCXHsVJjjoDsc2aN6jtF1W5pMFD/DuCvaa9xrm0q7sgnShIoOZitd8yuMG81jwUVEsdIxMjRWR4nNTPzJLTvAJ6TL0exzDqzw/471ZvruWSji39GgKGxWu5NS7LQVC6ALpuG73wrAJGkOerfQFOv/1GUHhBK0TDU+lmduOGqrXOfySmTOuMo0jkNqt0mHI9DTCtkMkYguYxzIWLKTF3aOJqVlrjx3ZnbJ4BRIVauzDnSAO9m5aYImLJZDRsMGx27f0vcch+sgll8kUDehyGlM8zQpwgJbNKkmf1bvsOw3rBG9gxsZvbj4j4W38rNG9u7wve65khPwuPGdnVYWOFTRtv7Ihm1aUj7A48LiBPRdN6Hpykg5joB1+AVxtGs4rg0rSPnkhVBp6nnqqrwEJdGB6Bd6AdeZ8Fi0Yut6dxHG3YougZmSkvhkZHir0ggVrj/9JcEdI6+POt4GoZYvJFJQoYZODrL6zQK2ThQdQyL1mwMfAQMRkaMW0ybCfh4fl2ijVI3nrZIkqpQxLuZi5QPt1VcmzTVCyr/STLvPl3fTI+noYL9z6TwuUi632HE2Hag7jwpttmhXbrI6K6uAPiFJaIoO4zSmQ4fST3dqQxAMnF5KszxgB+hF7UlrfrcntRV900XWxjKd9k6TOwtsMa+xGOeidvk3nP5b9na3ib+BFDUQrQUCJXD1VO4WOiH1rFyS9gBDmxd01+bqwCyBpKvXJ2sUrIcKNzOa0sEXHMSG3mnJe4EnZFZdXZzV8kxdTl4fpIJwcbiuOTpCjoMMVKOTi8LiTPVWA+JHLyKgPSHxIjv5EYO08ZlP8qdx+eVmbpUbRBHCejrKzF58vDSfHibA0Y9gT4/7W82tJT0m5phpOlfiFFPncfvA4wHkkuFygTL/ALnbqKwGY9GV5fJDFxWZD9dPx7ZCt0MnZ90aNVGuCXaH07cMbJIG4KNaQmZqZmvhmgJR1hHazxlTifUSDNcbhz2zHgIYDxIPnN1kF7HGbIcsNVe4Zi3pE/+C5y3RWe8boojxuJ4c0WEpU5OQ4ApGXiK9J7Iviw2eEkRllYcF4/kihyE6MQ1mPD5zyKko6igM6nKVm4EPE8l3LvGn6q6c8AM1v6BGPYyHJ0FeIQBJsSBa56S6C43Sfq391eoKs2Ju491G37M6pguL1+7bvOHHcW17q8v1VX0+MnYur5ZpmBWj3wDpwsXdBZGaH7xf0OhUPIyfbugRkCU+v6BAF7Pkyeg/XGZySu3JhWM9NS8PjoLatStuA6VgM0p/hn6yeqIB5JDO7C7HJi3U0EqCHuDXb8FLpKhxwU0dj9xFX89vdPKX4zFBBLd5WbJnG3zOJxYf8/12VmHsILcgFGURjWuKSSESsHdGRONYocoDDfqaiz7CuzF/nRb6oD61kZv1qimVhjJocNlPSsjkmh1bVtn0pnTud0fX0PBXQLLhEFVoTaZTTkiF7+K7z0KfUoO/1BZ6zLNVLUFTrmiS30Syc2w+m2Of/PGZnW6iMh/B33eIykL5+ax3/0vLSK7r5UaRowbg7BBTq8DZxqBsm1CnWFdNBRZJJmk7eY4fx4TpmveAru1xbnTl+g3lhDH9qSFSsro7q2hyB61omSz71IFlzah91RLdg60PPqzKLb94+2vUXGJIP9zs5kkBPUMKkDzdSOD+S3dJZq7Qlvs83/wUDJzI+lr6r9NYp09vZXa+oTbShpRWEIgBV8xlosHzSrHTz4SYDDfK3WJh9egABLg1ncgxEkZzSQjdG8tTh7icjI8Xgu1LQOFzYkgZM9VDz2xQt8PKemT9gU4ctLYdfhCgA/SAgSpz+hJazF03O7GV3H1ifkRpRvv24uux/WN1GNPq+d/AHvY7FZn6OoedRTpXCXTp/1RJ9wNE5A/yZWzVvJ1h3/5p7JoBb4hAadcR8HYl2PfWm0CxVKxxe3CkWzAbSQpxDzlSUKPqaclwbE5TM4qSGeXsRydBSsBC3tR7NPshb8Y00DiwR096/ImiW+vkSHgbAkOB0dcHTCCy7dtksxdIP25PJu8RGBnj6jwYp7bG41zVByi30e/XNN67Gvfah1IsOQyAapcDvK71DztTiOlwqWXdmP3mau49CBEKKmj5LKr3+T0ygGDaM1yuTnqL46Le/IXwMKxuky3Cb8V2FK7Ba9HryR6LQybqf7VPUuLbBk3pW8wj11Sk8TNTbynULxbJDEaYdGYNy0+OSGw83DZeXj0HstcgbhkSmyj02ElwpImFJFXwKqck8YRgTJhpfYM/G3fcGt23v7cSffWS7pcON3vNJ6AqjU1kFzK0lmlsRPI08Z3cVD7OXRqf1M/nStQUrJo9Eku4z9nyMnyzK4Ca95uVCbcD2Y/yKy6pLfBGY5s2ZX8xbCo4p5WZmLvBA7H9fBL/2SD/ThrlIoEKQo4N4JLf+GzFvPKdZ/qm1l718pbVYn+5weBcPhUCkhw2UnAz98XQCSD8B+pf6R4oC6BV65+W9+ZKBfjx3vhohHcaXqEInF+CHxGz2RD4xXVUFe5cFVcUdNncsoUIgSUvONGUepN/InLpJi6UFBgcsMiufsNv7nwARXPKIrHEFjm3wXByfjPzz/2F7M8BT+EoW6oM/319/8cXRGNkp8D3EzdsQHqCVDxoXIG71WRH68YRAGgXRSziHz5oy2lavziYUkdH1JmKnjd088+bqGrog6jEKMov1MRn07oHBsvCQH0RvXk0twOZ12B/g7S17CgZYk2afGWX1N2PfBPsuFao9ZL+uk6DZHVfYxiiqYOPt3DNSt7cSlx930ghAYxiVBsusm8BY5fSSsKtvpjjvqazdLM7EAsoDYMPCyJHpzi4ojRpylpyJd27zzp4lupimSevz9Z+PmugWbSp55H3L1+yQj3m48zNayStQiYSmM3bf2+d+OdhJuxfjyrid5sUA6v9sR9mnJZVc9Kv1KnFLVRHlauw9RUD5VkwCPndAjLui5iq36AEyCIhjAJubcOYwzPBODtM/UL1/iki4N1uz9lugWvGaTP5/n3Wp0vYVLi4scz5jqvQ84N10uzvXb+Xbk4NFu2UVWaoJqSNnzSMvvPfy+DEwiS3LvTJjWUZgXP3Vr4VYbyBxXN+XhdzXkRULXBxKxOfaMNI1/Il3rU4yDbHeNLS/yRHPW45bF3FN0/Tc/zkpa3jJrftFSMNgRhFpN9ufBWaWUm0ypI1exQboLT02N8aVoiIxNGuRwlv2bOs/MmBJbfjDpUQ8XwgVpyKamEGuElXj029sQDyNdvAQBdyY0O+sB37gYPHGvfOfP/CHwJu7GgHwJ5T0gmM9mC7wo+gUvfvq3TWTjqU/lmP12TIxnZHrgbgh3PIsK+X9IIx4tP/q6eSwWI7e35dsLjIxyxg/eqB9SD9674iJEaJXticQCI/HxAh5TwcpEn+wWn9om/tREpqUFpis66k/akBcQ4RUU9psVVisWk7YKN+yt93XIl/k0jZ1FQsymFl6fikucl/WIjtU1c5oJoMoCWKGLZNS7a+qCNRuHmX+EoyZKMccn0ExZpRigXxAhhE4usaMv1ooulg+ey4ohgxtlbLZ0gSmNdMrXj+eOaBc+CmWhItZizTBrULgXVQ5qeqcc0fd/+VNQzLsyQGhU2acGXHSQpFCT+9+5k383mUckadLfNpP3CYP5bR/aQioezNzaWN0RnbZyaOteLeCMLVXXy0gUKQsvKI/jsgZjHSGAwLMC8CEI5tJ7FX5ApyWnCfiLzTe+zHhQoetjoeDBj+MoA6BekkRqu3KEUU6oc8+tWFv1sHHlZfypSp9YZP3Cvaq5hffL7xVoiqMLUnDr8Jq9Z+7zFc+9GVf/0xV+bL9CJTZx0B8o2AMBKUZiKY6pHtS3FHpkX/bXg/qHdJ6Gx8xWyn0VziW5c+8S/ujo5A+OAIXO0g2kByRG87xX12EFT0kcWkYYbK0zfuERpywrx2hI0Q2Liqemj/2/4QQkR/wsn+vVlfRyLXkxUuJPmrH53Y3l+TaChvap9+HgHc4Mvj7RVacq5efnPpPqs+s+Xqps17a7MIbce2Q3b3k+jmW4iwq07w0rz9an+od5c/Dr52c1NhpCKXvxeC8M2sFGUIAWoKoRkpTWKyHJAB0xsYB1RB1nFrHgXzxSZOPGDQbszq4+IYznaBvwCE8a50zps2kp8JioItvlU2ZLKpvUPLNHmzYyNaEhERG5zIit9gi1zOgSyAFCrfJBUZKWzymJU1pEoF2fqtpxYupSWiEOfOZjmjLa52CEMplx4QMgrUu5L0vBqsoe0/9cDTxuEjj/tdetN46ab8mPQjyX8C5Q949UVrwoaTdjL/+pcc0co/oMhvnyrnMqwJZUva63o+GCdwvClluqjrHLS6ATY2GqXac28H1X8x9P7KjbbPI7p1xoyPkzRXFHocPViKSkm6DBTC8EZmQ36d5Buy+74w5sGPQBjjE+f/n3Fe6LCXjlFxRYee/fa2DW93WKXWveYt0NwRkYcySyB2KnkLLpO7h0f+giXCAt/yLde/LVyfrqcMxPBxtOBLdOW1PdTMImle227IujMEOM4UmmzwfmrvCoFz6R1pDjxwwtiEsQpioomlL1//8H3zHk9Bdx3FB8ZZq2Zq3U2uk63LNW/ae8XyWU+T5GJDuijs1I3O+X6hdXKbpIw70zCJLrIvlFtdRFx8s7shVxsngp78iJeu9wn0CS2UTP/ZnOFh+MdfEabFQSKfMHSUrdjdNGz0dq33kQ2eIX1386uJBEeNRZ8mfSKQa/F6Wrj8KSOl+hQlf5ekWHtrSteCeleZ2qy8u6LSidFDdV8VtPAwRuR0NlVdzrtVrVFh2vIHjK1pGHFrZS450GdPedKVqbcmS5anKnzvIGDOMXC0JLQ7rx2+EdD6eWcOdlJqb2kwgwwQ3t3auy8Lx1B72iUYd+RYU9Z0m3WvYWt4IGj6pq1iYB9xSJUqBfM/U/+KXeZEvo0tp/1HJcCl8uCv3zkgIFYHLtr2y/Dy/et6EBIXEzG0QWZV44Nzjueu2qSbCvmTdvusjfIRV1+lJG8Nv8NnWTk4Pf3uynp1yVlFxxiMo7PT6kcXr90sfB7Ea/0lXGkWa4kMPsNXPgGOi1q9JFfXbmCDK0gFen3HzuOI/GZ6kUsKqn/EnJtdgo1Rz/EkWbVHbrUsG6rjn3suiq1Wn1j+QTKHuMMzxMPv2p908gMH5yOkMUZvDxpenljzJGa9ehVozpNM76LeAvPFaqNMb6s5MEMy+i5ET2OYySAaaAqcjlNu8ceMOs/o0TwMzgiva4omYK6rXA6jKb6ZVclum2/3ibSnRiqczb8bs7Bde+BbFrUFcQRps0k/M/wdboV96CqgiTTqGksqSTfFj+mVn0sxPCyBRz/5Tsem2Gtfh2Mm035P8dFgUet7cf7ZuLDD0lqY2Mykb3GsEa3cmtRf9EAmydQT4gsAS8Pvi9LnY+7PcOwACTdRYGSE6YtxKWc4orBdaMfdpSUZ1aLF2lqW0Yhd1ltvOHoXxVVbQBkW7JD8zhcuPno54NZY57aO6PF7YigSAAYcyD+qvtMFXoCjhDBwCeWOYZucbPQmH21svmN/30NTRlff0duPiCHly/P6/oj4cpelz4gX8Mo0icBCkSReeabUY8z/PBb6k2eagSkp1NGbmYGoOZTzYX/6bN3yxA7C5GwaaS3vFE4q73Y/wz25aNKrGJuX2ly2Kp8mNcU6db6AHL7q5xw7w9cg1fOjj5lBosyktLumv7kuz5lyGxMNmTcED/3UjdGeTRd993/Urfc4DLof9dSMfzpjy/oCx7o1VKRoMzpHxDAQYDQe0WenHDxKWvJ7WapTII4gStAZHTZQosxuXL3vzUL346QwbMqqUECp90SLc74ISWDkrXSUfjCRuX3WpKt4E0N53EgTbn5DUvhDYmjVLaHTKnKMazRLgVwVcS+bB1V1yTaq95QNWvRgahJpEn+ZaR+AYgdOSPAYwtRaaZOwCsF4o6S6h3RnHz7p0uhcDhcFb2FaE5anrN/yKqsrks1bSU9NmUNvPjOsTobCoojOZVL7sTeFfGWlJCqpnO7QPThBtl0PuEF+38MMAIPRLE2ns5cQqp+J2qdpnHzDtQDtSrv+fpdU+OTS8F3di6gnGcPQeS+xwyaZXVk99aetZve6yirctYKPYSTUm/1MAeQpx+CTphtWAZctRmOpjs0coW0U2G0SqdYcCIP1q/+9zs492mw4u03MhJ/DZq1yVS2nywLDaxkT+tSuhqR0oKPtimb6+vK3EeIz5jCYIffcBdVHl+6ZvsN6nqVvh4yxi+22ZLtzPvYhAKGwhWwUf2kJaPVKjvll7gCh3xRt5njVdJFPBf53hJyB7n6tQvakp/UJNd9q57LNlqrXXRRpzauDIprDAq76h+tyNP4ZsoVHOjCoEV3nBVxh+XJPluWUuGhFv+YSjPIYaDXwN/DTGYCUo5Hz/CIR64MjP1v792ZjlH0Rqn6lY8D45y+y20CCtdiL2GAAXs6nSjZMO3AsSEC2b97ZGEZ/mOYvCdWgzGKODMFjd4d40syceSczC2Tb80NF+h2Laa2oNjKj+zUxG2ml3DjOP0dTU1WeHcBZInPFXX2bmCT8E1wdkkoL/U2s5gWYUkC2xNJjmr/d4UxESOEFf8M9OI3Gi+H9g9eR40HgDADfz+BjJ5DdMLcvDxvgR/EvvpdgKVWFhGblwLy0M2qrx0e+P33PzTrwzFTLW/f/AcbhkoW25htGajgGdisEykTVinfA9Q9E3j2Sz6KCzJbHhLjCBWpo8wMfP2UhalY5Pzf9T8Avf/DrxD6ZIPv3qkvnxvobB6orn+he+c5Z7m7XZ7ENYTDbW3Jpz7YtAdWqcHAQEZJXK4QIjJvWjw9lUUAZZbLRgTfX2yiPy6nlk7g5oDL4yFR69xasD/93lSI8fpIOtvCDSili65qeSGsAQqEhcyIA5EGgUZddSVyMtIdcWnepOBb/FsawMs/GLx4OAXjMXg3jHd1zir8lzvhxJZFKIBKaEYRygp3EaQpmtsjEaC/vPIY1LPshrdRgvYzrr7APrb4GhSEbHdxDMvTiyF48yiCTEAsQ+UCaFPNVNOQ2ZhAYFSBeEc3QX5f4uczCRTR3wpDmB0S0uQSOAcIMSCRLmT3uReuGJvD78WaRPga79L022BgNv0vius+FRQ8sFj454tcNqQJKiDYXgUE3pGLvrIGfK1jRxzA/QBFKQwrv4BBZ0mQzRnbV4+cWDgbJleYIATYdm3ZPT4fWliOvPD94wl9Y2pU7sDRpin7kpok0oRht+bBaXpcregH+sHL0q7dVVPhfWsiORCysBGfCZ8920Yv7jIXL3GoSDesUtR705X2UEFLjOKEACTThKNiVZ/II86Q9jzqksmXKlWYJqJzDU2nHK6wIMRUNFOVi6TDCt1sOgy/spDYuzH56mXH5P6Euh1wlFj7mHASGSqMAkT8R6fK5Htfz/e9aPb4BzUvETAFszF4wQeqbXtFEX4O0M0z3O97/gdj5tu9zQAg0nfSKwufr+cpTFp1cFGXaP/9d+jXAaS7q422hc8WpKf8JbqcofoLVDshPB5njcGzopGn4LnHcQBAfNLELw4HjpKgnlyUkvawclbFWZ/VIK7Q1BGq9D8u00Fr+eAG5vID9yOWbqrccRyQCOgfSF6Z/PBNrHXkJ39KPNkxujpd9/DV9A6vqgufuN9lEaiMwFZiEWq4qL7Ld79t5dTJIXGEMEo6VjaQ4Uw1iRF1FV2/fV1SsWwpBmhz2pqd1bcYKVLeh6HBO0hTLBoTlPLhqk2OxpqU1qoSX0Wx/OT4I4vantMJRkzZEt961uOP9gkk+DaI5/BeTZetADAByLSO5NBinYbcYnTDtLLUYXr2Wfsn5z9XZwfjlR0pX2zZvkqw4pq5UkMB5wuU4hyn+wj/HqgO23PekF4n+RRA9x0W+Uib34RvtbuU7hYm65PIOzNXSvyZiiInvdgnddXPN20xDIdfMUgWSmRLXgDgVyFFk8xQfO2mhyS3UmIU+eTP192dIiARCrRLYDDX1G9ABBcIySHTcusSs9xbOqJQwonD5XnenGxF5kjGOpKXrhJrJVdSo1JWln/eEfrJDunmZ3QKAtKVdibLQmHGmCULKplleUSLepvrK0pUAH0bM7wu15I+TWEgyULIx8iFtKyAZQLyCXxYUgzAF0GrQgjJWqmcJZZL0+UQK9JwaNCXZ9e0FfGDzlaWuJNpCIExgUKH3T5DSbDhjtVSRpCXi+BgXaVdHBzsKUgZE6tTQIPONtUGCzUwsopcHUmwNIOEucI/bqz7WJ9CThX5LHXd+sYJpSqLfcamlHgwrtpL5DTU+FPFvlpLE0UKCtlvrHPgPMkWSrbzshbxqXzqOilaN5QyiwAg9NH5WSrLZWMRdJGsaQrW+lKZYIHTxPgqrXBpntUmG6SpIgPBTsrMEEHL5YisRsxiCUCUJEEdIwRWYzhFYNj+PKOQjgvgksJIh6SSVHUSuC4HKdmlkh2AkywFKbEADihpIhJQ6o6b1Zy5wv4yZzIli0hohN5OV2NtyMW6zwZK87Ps0maRxbgF1ywsytheR6zSK4bqeIInrdhkEUCSiG8GDkEwrPkR8c7Qc2UYktJSK0SA4olet0UpQRChDGamyGFZAcklBLcDtrd21fJ5XpFcLR+XzwsW8QcLYJ4QAfamEUwtCwIQtWWP1vmjvdwpL/4j5MjXnLuvfTkTY7WuwdFep4EgAoIhyE1xlVoaau3/EbQY0Ep0dhN/4+qQrAFylg0BN/OEoRN1sTTLTDjDhkrmrdzObshQmeFZwNudYBLEnFTw09EXbHAV7sKZeC5eicdwL59XtbsJqi9DPHH7/Ioip8j3Ird6Q55HyHUHOcWhWwMblpsRnEqh2gIox6XkdpiiKs3+gN4ywPMM/F6+iyovcn+APpP5X6v/otixwxecTX3cVG5rfs5M0DZaHjc7F5mvz7HQeSH6zYMEQINDOEyvkeIMgqCmugibGZnZYDw5O0fcwbdTnWqaVAG9GMT7spcozJcAmov8D4aBPJ78YKa9SynE6ObBwExH48gKSNN9jwPu5L5UzzUnyiD6PJ4IYhOlw86vLcu76CpyATMpF0E2HvcIBe5LfkUu+WukbyG998EuViR4T/+3NG6eF9cShm6IXuBje4AcQFmMvgcKhRRQ2jEJ0i8SSO8ptMT21jaE+IBm2QpgHdgKJvHoVgif/61Q5qBbYXyxzY83biVtfaD/xMpk94v8NLqAScDh2TC7XmePpIvjShXIuFGnFRoFMCwHqiqKqogZSuX00ueV1eG7JsJ/uFM2zqfhICewsTdJoC2jCNQdPHjcxFqTCpSsspXKmKGUaD63jayJw5DwTJ8PvZARpebqMKcwOkJuBu/Tkk6ZGS160mWJsmHqYErDI2jh8hVQmp8dkW4pbC+h9AOgpYoNvcpcG0Rgkic+qO9qzPyOpKTIUo5WnwetIfal9Ml0ojgXvDOxhuCAVermL6FhGbeP1SIoFYWB0kqJxLiutZxp9IlZ6iVs6hgGEgJ3ukVIlwOnfeDYK85gJKsaaNbRHUrxa6tx0GU1BRHL9K8yeRbr5gZC5RyR0DAbL7yb1szqWlQyY0QSqUZ1ollXailKOqqrQvzah06Z6bf8G3VKGo7GFv0iZzYVLh2b/khX+L91uzoRhETEJKRk5EgUGoPF4SkoqahpaOnoGZlZWCWxSWaXIlWadBkyZRXbfa2LW7YcufLkK1CoSLESpTyycgqKSsoqqmrqGppa2jq6evoGhkbGJqZm5haWiMDQTpt8bLcJW03a7x0nnEyhd10PCjCAQx/40Efe80kEgABCIAJiIAFSIANyQAIKOuW0R531iDPZCJYvGHC8+PHCeMir1+8f0Pm4+Y9Ch5V3Dw52207E649vbsb6Zy/rxqu7B3v6uuHmATgygEUH5rQ1ji9aOjB/4QIk0j+ARHatG//x1GPgevmiX9R/6KXLnwTZqQS/R77ZcxISzNN2CJZq9j+jIeQoLDo8IgnnYEs4LwjexiRh4g2JHwF5ZFo+hhBQ4LWCsW1/wvO/+YD6JHv3OYKdCwrcmnxyyDlPfBVghMf37r1M9KrP6AgKhWWp52A+OPrOg8X9YR84FDgAAAA=)format("woff2")
}
@font-face {
font-family: KaTeX_Main;
font-style: normal;
font-weight: 400;
src: url(data:font/woff2;base64,d09GMgABAAAAAGagAA4AAAAA0lgAAGZHAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmAAhlQIWgmcDBEICoLXJIKILwE2AiQDiHQLhD4ABCAFiHgHjkUMgTIbracHZF4Lnrsd2PH+Ms9+JELYOIBYG7aPRNiETSqb6P//vKQiY6bZTNMNFRBQ/blSCatQNSrOgpeJiUJlHLKRhjMn7i7ko8jo8gxzFR801TSw0i0Tat37bi+vKqaOBz+5uGKeanHTsl+X8UYhIVJBUVEKJwyTI2zsIvkh6xfj98GIibTjsk28o20/ozGZ+q9xI7q5M/7Ff/5jhriYoIYFajzorm4vUYsO8bviPnAGto38SU7e4WlO/91dcrn4SRwIEQLBQgQSpEDiEAIkkODFrIZVqFIqUKpUxNdV1nWV/dZ/dZW/Ma1uaydtZ+1+p4XguZ93v3L1vGhiI98Eh2UyhsYKnv/n/ts+5743Y1N/+vzFAg00DDhrpQkmmNFYJdT/vtM+O2ke2DNseG8R0IkfAHwukHT2z95l6cqxU44dwJYDbaYdLqAlLcI30KCb/SchWCgh4IWaUVGuR3s9E3+6v+3vusx/FFvfvH2oaLpEJvR2O98orrkqHEYgDRbjgnAYhyUA/vqmVr/sX/cuNwgMiYXmtWMZQugA90zbq9tTwlXnZRjdsXTHI8mJAmw5wLChAcMC8S3a1czbwX6Y8W9+/lr2DDEJ2ZNM0w1i8vX10JR0jVgN0X8xN/JK+oiptYl4qYhXjh7Jb3D+wXkTU3+sEw6nd/d2e2drW7fQljpUVEAKjLKpHi5AhgvtPSRsszYo+c9f1F/U6qrRmfsiRG77S4aSFxQHIqJac4m17YPaHJCyO89oyy3p6bkWwB8g8cfO0LJqBRART934F3hBDEETBBjoCtxN10wShPTvT369Lqtbs/hbWhRUbU6UbZSYtXWIQepnZ68dSv8v0YyPI8bKx9IRVH6V3/+Zara70AXyInUhh9en6lx0zkXpcvbPAIuZWYDALCBhF4xL6RlckM8ElroD9xIJQMzSpZggiEqg5KcjlSLlHEKVm9qlm9JFGVPvunVXhaJxa3v+fp/OzDn3p8oWyJq9yK2mCquyCl2BxAVKYN5797Ys/GQos0RRi2OV4mEsxoRJ/rZsdnm/UWqXSHQ3kq5buZPXjT2hzwh195fVd1FlySpt0ogIxZs5XP96jLlCs/Fj97yZKeEJJxwjsl/2YxnT+mV7+9fudFZR2AkkoP8a6FU9eQW4bEkxDwDOLj9BB+DPDgGwiN86tGcIzMPh+4CfOuD55Vnjfx2/EFkp9oYo/qkVM5AzwwwsfeEAgL7bAIDCuFKGoIKFQ9lo2sz+crlJH5RPjZm22mGvg4543weu8BkPecobexbXEvy3N/pF78/KCSaaiZma2UmmdoMqCsXAJrYwWbS9/cRXdtXTWHOd9NZu7deHOq+b+gSgGlWsylSlqs+UJYYjsOPMHQcucsjHTx1NjGEacxhgCevYxV6ucJWf+EXNVk/cJxwLJ8OH4WL4KTbECen79FP6M+bvuOxt9R++fQtQqDNG3rP24VGfyv+Xi57ylV7rZ/1qVry/4qnewIpc0bexzc1m8mvnfTqjc/IduXK6e48BiyNPB2+knan0M3/0MNvlS/LLJ8fUY1cdujaOS9+ll4nv6nn7Zfr26z9tjM6cfP/okZ0rlwxOacIv8932zDTMz//+Z3/7Nz/58Y8a7NmxafU2ue5aXXq42N/Py10ficHi/OYXzx588+CUkz5wwnHvOuSgA/bZa481Vlpu2FILLdBrsm5NaoxWKiRfHr1aGPPflv8yKJC/vHJyJHnhW4opUEnF6x8Za5PiP3nQvCKl8hsATWjz/wceBk9CipCUW6Ff3/T/XbP8i/Jd/l7j18zvNJcJTsPYgC9ngJ58oXD2MzCaY+0mzpFPr4ksnUvSLflM9p33BJcEyzLqABRGHRKCuWQ+JIJ48UNyQHvIjV9f0oYmEaMWNN5oKVeXibi9ABNKxCa1xMeLDlUqjMp8edfXpnZ04sLSXcQpop0ZzBpiHx8chAPrnIB6lHAK57QZEI1IjrdFS4cW/K7hzOLPrhZUjmdjChvBsxvNNn8FTHX5YpkHx3d0QQjGpab4xlBYfWpZk94Kqnu6rCsofW+BOfKPaSwRGgss18RIyTOUhrFo1lqCyJjgjOAoEGwvqc/9Tnoy6Zm9dMZkJlDwjJfMrE1G6MFrgGRzQYeiNiQPjEFsqV3qRK4HrFOlhIbzvqchGVKwN0LJ7SJmir0wXM3pD5sYUWLryXf84+ITOff6e/DSrZeJ40aI6y5tWhDzBi6cBWSOFq8uAw0pgjL7HUBulqSWsqqAYDlYIsrmhHmMYseaMoA2lXJ2hiVrUVZzITGmx1E+I4JOHhSOtecDR1I6BpKWADGgS7mO2GLWnIspWmsLEDgEpehTuWCxGDljaKM++qMeHmZpSAY55xKFAc3sUO2X6sZ68E689TxlaCiossEXXv2QDNYPMDV+7kCJbFUjq8hHnPlL0lGCrVIIZ1jyXEypc8ifLQqoQZKZGviyHQouRvaIaimLgmSO2whfttZh5+0oc68WCjC44zdOF2Gq1N2GZCPTol3JLINwUkDOFlbsFyK+M/OPy/3Ws46XPl9Zc80SUjy+SRg1Tg0SSjGLs/Jx4aAFAFNHhCSY+4QhXI+YjaUC2tgONFQxJlWlqkSJIp560xfAiFwVVSVAsgoTpsXqbvAnn3tosoWDAmwPgXAF4QkhKQ6+MALxSElAWiIykpCVvNiA0P8lheTLdhBUhA/JEpn7zb1Nx597tpoVf/m0HJbYupnrhOnxOmEXzGOeORYSjqIQSuJQFkZFPKoSUJOIUBLqktfaQB2w6OyN9BI0ch1qXJochUPtmBUMdVH1u/V3kjulB2AKb1qSluXEnr8Ac8ZLfbKyCm1sRNzU2OsUPkyMwxMzUhvYJ3+Rhgh4ibx6Ckusjw2VyDLHkrveAs43eHCtvJXlEgXb1DtlCNSY4o8RLGtkEtOobtafSYrbooAqSnvmCAXJpKFSJkExWRKf8o9betgJYd+NupmqXRzgxLWeTB2DwHl3tzC2N24XKwm5FlTYP8htBeocw5HMRFDBhSgUfMLowh7GlMyFk3CIl6/k3GnHK77pSJskRC5KxGQSda88Xlkc7ci7UgHM2Ap5plYrl3ByyOJIl1XGSAJ2iyiTtOysSTh5x9IJlZxhxJwJo1Jh0RkGb8lnbWUSRy08RrnTO5K2U+W3LTihgqIY5SOLSb38tO6sTtLsnwD0Cl4MzjXhwRCiUeEgJ6FCLd6pawZcAdwiLFjW49NnF+LEnNHu9RbTkA/O3wP5vhsWP+BkHbLPxfYCBBWJyM/cZVh3mxZQW1W6wepXM/ZeHLzp1p9ekr22xIeXwbH3eH4FnPGcW65j7Jk5bruHAit2JVangROfI5H4hcTElA09uT0qqFHJMvzBNRRSMz3klkP6X0yjODEpGcde1rLsfLzMesOJ9UUwdlLqjSyaZ70UuTGlDbg5Yh/3Ux1I8OpquTXsDGRrexsFwMskp7Ha4dSjD3b/As6GoMIkFyV1ZE0pCOjoMY73qPgQGEVNhN4B0BCHTBGyshIGuwOgI+518SMgkugZ4XcBDIxDoZhAkSgWJTKUqiStLMmRdwAsxKFShJyqhKHuANiIwy1cpKzN1iFlXbYeW59twDbknRFeZBw4PK5MPpjxCfGhqdXTjEQ1exgFEcwD2CIAlvPIgnLllmu3QxuW3XGb32EXAPsA9WFrOh7d8eSOZ3e85AzXALgFqO/Q9Hy459M9X+75zhk+ARDrjwF6yw0/4VP5ZDtTCnMdrlQ3gnjnzXQ5tlSSW1tfnK1LDYsBEOi/BQCArjZh+CmRvlqnfmTA8Y4eDuMEkD8wDhcGgqZ7h1glzEkWQMRxRZXFLOctNKqLfATUTSVSUvO8ZVXsWVCOQjQELJdJOFeb1kYI7/iQHWNPBFfuZU5lWaVyESLDqoJcjQGESMxzUKTWxOmQ594RaBnpUJ9Lvv2mf7AhuOlX71TCmFHfPyG7GokN3do2mJ9MzTs+psxOF+LjEl5r24OqafccSmnSU1R/QK+tSC57xkIQbC1frdVXnrpbQ9+tOsM8PbSO5ia944fFjqRJNl5gdXsQsrIy2mLJU5ql5YfmDye2OU9Dc22rPNvZv1/qL5OZzJt8oCc0aujZanChdPuqdnVIDSrRjsqyN25k0LLNsG4HLb+yMprW0kQ/SIy9hN8Zb24pytMjxik/CHx/aW2GUqqX70e7sXFg/qp/CwfV4fLTaDSZnxpGSc+1XS9eGMSb+roRCLHtRqZJpU5PyjFtizKaGVg1zfSJbuYz9XAUVZokUtR+N5dTVEokkiYeCYLT00q90+5IH6QwZxCdmKYruxVxVdVNECK7esL1GdOZVrAE2hErhM5CukEv80GuMdGFJDEEU8wEk1Ytx8481SV3omNWhmF1YxK7i1OXodSQdIVXsIuhJX0SHsXHiR9FeijB5ND3YNyNBAlmDQAOx71NSSEVxg8xj0HbB6+6iNzfjBLSMKc4FvqyFIy4F/WgsaxnUKF8ilCCw4KDiDOGFEsV344soB+aTEQAau1iHOI8LKNcX9dRAQdZcSNmZmsvm+VCbwPcoZUmXU0YH90ahGhQwNwE2EwaddAthS2V92zEai3jIFjDMKZdhkW0Ob01jjGDiyeQGzGaYfoiYKLsd5NOxzQy6gLmEAFwJzLi5VyjaSEVe4DhROn/kS6zYHHp4h8xdcjyQh0zWl1t2OU1Yl45ArTLjxm90aEWbzMB4p2O0eVLYVwA5oyIsyUbqepKg2umfVG9VsUhHNSmxIUueF5FzE6ajiKMHmVrxG+VqiarLTzolpFiOoBapu4EzBOI/IQpAzgH8M20IZv4DAZvODXPec6rqjt8OrN5CIdYIW6Dkop1CQQHzST9o0YTtk+sL+cD1l+WJOvp0p2E/JMOHMdtPSKiogQHQIQxarMC20y8mzmVa5sFYzFCHd5CwwpxkB2ZfJ4UMDdyt3ylQImbFCd1mRFnmaI36ImsS/FsPurFTipnM0lO5yCOlUrCbaUWQnA/3c0RxuKtyJEORvoMRf4Ywv8TkvisWjVHZLd1FVP34fN+QT0VrVoSWUgxX1NeI17ZWKcmAQ4Mzh0zzKCm5hEmcqSr4zS1cUZFsDTLrFJiJnEvytBu2FqRhtCUqzO/lPcF87OAaiKV28OgpJK1EuBgjiKUGMSxETn/RLJaeB0NQZswyq4H44TNO5hOTZh8pbYEjV3igzugmAyN77ClP5dXRFbcAYYkmM3EpAYd7uB3REyqqX0gmGCguabXUKzKmGAxMoyO10XPruRd2KYDOFTFpRM1bUxJkhyG7QJJ5DgnTn0hFAszbCnXiN8BOqTMEYnPykPvqDd6o1I02ReJt/TsQRTF8EzNHI6DYYJYqroUxQphsNhaGzN6gBQXjxKvjdaBKtbGmXIxMTE22GdxGZwo0FSWJOpEOVKlbQVLpWqoj2qkxBMcRaiC2y0H4O9YnA+KQSYtENllukHCMxGhCYVvNkKeMayKtNBpnydT7C8M9iG7lQ3ACNDhELeMnfsDhQpBA2VYGjlWxl4ELUEAfWjk8WqHfMa1cGEXkshKEu+e4xR9L4vHrxI/vHsdoCQ8Fg+7nm2VLE2sx61LgnjSmSS1kYO4GGD5HH5IvYeRmXpXL5w2tH8dXy2J9bZ8msZzdnph3XciohVykJmn4lthUP+OlqeN1tz7tFmcpS9whf4n/nu6XTMGTX4XMY/K1lNTGSDmafyjDA/W1XYqG3lQHMNsfhVlS0j7qb30k8iyjmDWQ5Zb1QuYYcrFWBkOQjNPzrAclBWJiwFAF/oWZmt6/FTYWuxyp9h6T4kkEu1gEDlUqYri/BCli9zw6I3+E1wda6v1JpmFrT3Wsv7+gG2aMvqGtgjgkC7uAL2gXeoijB5Muriof8uoX/8obGysD7zDLrfs1hURSxo8MugUMZkMi9MlHsVOo5fal9qTwh0lKGTZZsJecdvLoqBBIs3JUTXAk6ZiWbKMGUYeElJLFX/GHo/xWeYbO8Ifj0qWWuTCmZxgyhTR5iKrTEVBoY/YGzL2XIYn1aLbkysxYEOhMsKGnhYi0/u3bQ+KllewRt9Pw7CJru/hKCrbS1XLgt7eFob1oOKqWzsZiIRqYvZQ5c5eOgKd/PrKlcs27QsneL39B/sPr9pq5aF9jVtrNBPSBY9zxFqumPh+4l253SApUALnbplUWNXWRcvAfBqlDDRywEGt87abpiO64HfXU0e5Q3dZY/2GGBrf/PKyuWjZ+JPx73REbsNu2+TAE2xF/4/3QcTxkdsQE5Nxbi+FIGH0YkJUTpdiZ6xLwulcmUyCxrAkDBfpYNeq7vd0yhKocuvfOyUAOI4Zmi0PQcuo2ixw2MtKB7uslTYfRiyjt3fQOMSs5vtIhegNcdA2MQv0fcse483xKeCkmIC0bNLb4uP+RrZdhfP5JHExQLqY+Vv0KbkqYTpQt3lMUT/cewTHfkNJit+jdBoGWse1hLrU6LdPvtVzwZh7rait5bPv6G0cWdhFt2U6ajnin/JMDVVPIksJpLBKdSKmHa5VU9kDfb35mrUJa7vrceUcCfCJHvs5h2hm2bhydjFM+GT9HA5cr6NwuYLW2nmeI20dWwKzKiovTCXoYnPEr5Uq3lLcgqwGgllRL5uBclHHt4iHenUmq5Q2SgJzajkqkwtUIzWGqLwC0k08UgH42kabCFG21KKxPyZhVbkkbTa+NaRxVY1SDFfndCJI8KCD4wuPha2CJqNEsMSEmmcczD0jAa9TvwqgOjUb1FlOo+AuNeYOHWDrabT8tSwnNEhSYsz6QFpWVNPJENU4KBCSwMgGSgoFYwRnPxBpmQt6UDI2shtmRb3R1BVMDsj60JJes7+/C3kTgK6ILHa+ZrQqA2l2Y0wiLx++5laQ0kGlINC/m6ODUPcQ1C3MyUIH/dpIT6rbQwnSS37FpDar0OsUVCg6an3rj7F3owSDPQmFybsWqm+acXiT24iovXcx1HmvWt6VMHBoa8ZE668BPJygaRH9huUC+uxA+/P0PdTfhyBxtfCfNWGgpkzR3jdjeHqK7wc4Yz5iELNziyftuLk7pMtdzbMfsJRYEv3rcMvkYfMEYE31S1VBx0I7JI5dKDz51D4202QU0g1EylkPhoKXLABN/f1AmhpMMbx4owneY5LAPjb+CyKikfg1odqeoLb30a+aHBVqwPQvfI4UqEG4ZY/QUEi/vxf+CBGlFdMVyArHAUOekslyGhzBPOZTOwBULkVJCBjZaJJKV/CJ1zDRi2gYk/aBH9UmM+G7kKyBJLFvsoqCZbdmW7cQk0h7mTbZ5OH8DxeLEsxRhsJaMUp8LPNPAkrmPwL9jNnlUowOkeoN4pFBgOVIgieq0khH1yF8gMKDtrGODq1sgxVnxU5ZVNPBiulHYQYQe1RFi2Xtm0MaVrWQ4S3i12rtBxE9IUY1fxR+hlZNtLsff8Wpn4AdKbYUOvC+8QMVUiANIh4lmpYu27PuRL+LvHcUp06zUou0fMQTSIVIqG0T02XJiHg3IxPTBwILtdOtggRVtjaiaUwOkHK6YTwPOTj42yy2ygBQySJ2H1C77ofecIm3OOgk8eN+lvTNYB7xkPbkHLb6bAuiEldjQcCxcs3PAPMQyUYBgTqptv1jxhwSDDzchDlsOBAZqxFjqYFyji7UYAcVdYBMYM8EzuOyjdo+E9IFLBiY7v7gk8fNl9NSRMk2TwiP4uYxiikEUR1T++pxI16zq+wKjsq6m82Ke4lM2bZntB3c0Vftsg9//VXJjZNriaJ4Tz3TM1wF4mr8UDaS7GhmQ+xPZflyYz1jaadPN12lztCB9qHbrm5SUzItZvFEK2KNg6lsCXRj18w3VD0nGKT1pOseXg2mrc1nw3RLyO55nlRs4iOPA5UJCw7iUf/8Lk9xMj7a9EtfuARZairBoBW6l8Xfyi5iO4QqIdUbsfm4N/Zq2EEEgxgkdBhYftPwnG0xeX4XgWM7ewm+iWkeyYOxy6Hr/rkCc4RisS/keRbJYuPlG0jLVRGGk/CVsNA/SOCaQqbNhG9tiAnVzDpkr2AjxZWV3MrwlK7TmztT7x2pHPXaslnxIAJTEMRDJBwpSXQ3LFXsy4YypTlloItlHqJCsYRUVd9WET+H0A9ODUFe3xGSStFNfPGsZxJhV2btTwnRtHrRbe7f0gtp0Q+93NGEjI7L8rv97nPC8CiJIAmJ1kg29qMhKx72wl4VV2xPV/obOwZ+buBWd7EoKbyTW+gteR64VM8odek6CYgK00SxTT7ZSQmjePqyg99YKATFJNGC1cjgSRWDZVmeC6yAcRMgNFEVf1XVqnLe7kdWKhvKRrhlhgXPICOz+Uho82CZVqWCH0dUwAIDj2RfdzCzMKyY62d5JUVUOVKRLmEPk982lz2EFSAmV6xox3xG7RTPtugqfMOjg5g5SO9l4zbxTIgtZnlIp0xpED3ALJG3aUm1UMvhvTJr4bxLEa/QHG7ilbZpoujQLQ5zSB8zalgWruzEsV+/7Eoh1QrnMThmCd4esVVgWkXEQgY4hE5qaAvBcrPTpMQkPeuF3Oe5K8dLQ1f6uY0VrxhKEmgkGPakSzxEM8SScrUovQMI+WBkkmCOmmxvESE0zYi9GUTAwdot169Wj9NIwuARMfhDkZyiPGH2zKCxsYO40xoiatYhqG2L+lCLyfVp8QGmIzEf9zuNI/hEXeHtET/3q8lD/SwEZyi0SEHNH42uEa+jvUfIXhtyW83fDAgD5psVLI7SET+pMNGqFShUHnwNn4oPmZO8xa7y012bbxYdYU+X4je+TVeBgdkYbTBNd0tOWQ+JDqVWqpbIWAm/xiTYr9tey97yJ7/MQMSoa+wxJ/KN++HArub+IZxAX8rda+5d5e2oIG0h2EGNgGRwJADXxJo99qqiGIf0Avq4XaFcDcPqIhgFg/xwajBMUzp5nnkWi8Zgk24gJemkr6Pl7KDmoRZceorP4No3WjCIJDYIxk2iRXsp88eWXe26uPcPuuW9j3SzHnG31kUtkVEoBuLCDAeaE4Rarx7mOU4QxXL6I8Ds9Ua1ZoIzLJsMb8mRItKWCSFmUxvBoxXioxt1mmgmoErXYjAIRKdNPaXrDcMOWU0tOIZcYvupP+AEdmymE9QzqYGYFkpfIDCHNQd2P5gp5uKVHHO1vGQVEXwp3CWSpddRWTJq4G0CRei5+Nf0JS4m68yMl6vfRLupPWuIYwEhtQ/sQuR9toCnhkcz5BzexwFTNpHhrvsLijJ8HvAxF6EG4hiHvbj0aXhOScMltkpdEL+iVrElRjVdlYSinMCGJKgqL1NNPtiuUpfa1ujpe1E5ygXYoPZM3ZKD+mBazKxsKIAcF48i8Uo0oN5hyGoI3Zgqp5MrCNOn1RglSczK8OevY14vKiF2eY/4yBFgnpgM3KNh/yITa8FZ7gRiaIk3+jb55FqO9EuZ49SH3KsW0nE1ekZXtwUErisaCblyMXT05ElmoCgAFN9MjN+QET2CXAM8WeFlp8yj9pJBjpPYYSP6n7CuWmI4CQt/DFCnE5FfO1JeeJk05+4MBqySWw49Aj4TOtvmE4QW8AOpyZPSiCyGJdRlid70TGKDraQ577RZJMU3Yg3S0QEQxKK9vZkP/jR18KMngtiHaUmHvAxiwnOpS9lb8cgF/AtdNpICrOXwd0pWIylNNbmj8bRc2kIHwgPzSnbjPyIsJ3QzsasWGntu6uyx5fJsdf6fJRZVbt/ilIN4buTWukK3sGB3FErOBuJhqGGxZXtvpfQ2P3L1cuVI4ZxQ7VFk9xDyWUfh0Ewm5BxUp9lp6oxxFvAaZtWBDFCmnZAPTlHJCRU+EuY0V+76I5CFPoVvo/YVE7pGh9/U2vQffJitMG7XWVCpGzTqL74Y2Zo+CQxesjTp0dImANeydpCMzfA7wlJxcRCfVQuZPjQKmcb0iFSz/smm6BR8WtpDTzBwqqiVPotvAilzxhfafadqFWLjjKMuqtd3LasRZRMAv1Qchdihs3cVTckLniZVCASk00oZNLrQAwzz/i0AgUklfRpA72NC5rriaY0D5D2Pr1oI6GEl7gxZODlsbLGM5DsEIr44z0Jdfz66Strup32o04u5pRN+JsNuQXLKo3RFVoh3YxHRuFyCnT/vNCJLZipbIgCBqFQNbFgsvJb2WMyssEyA3ngrjQyc8lVmrks0wJBzUfYEbMziTkUHTUcNIjCLpGLmeio3CLNidEOGJEDZDGxUFSWP0rNpEGOXFl9+OpP+AdyPJWJ6vWQG8oX9veM3loA/jEL6EuEE0C+i37YBuTSLOyDo19PVKuL8KcLwQB+pKXXpe7HQbwA2hrWY9UfEXT3WLDCIFGAL9vO5B0GnZBfVjLgVeNNo0JIVndhrKoVQA4aGGSgVGWjfVC6ODkQc8wPGrlYcHH0ZoGws0zRrWlBTPwo7Pr7ofcPTdp+wtrodPXzYy8L1Y3oAxIVzeM9LUfNwjE6eXDr0Gt9DDFxw28X3kunF7pa1g6GVa/4obLpHrPtCUKgB4+RGJv43vdQIpvhAeNcH5UrmRr5XRQ5KxYZs8iFQXKiTCsVLiHd8K/GRbOi9uAdCpqgnM7dZSBUtQEED4U1Xs8Wpog2pJZtoot1sgyEdiCKaAeq57dw7hoviYRUjZJFRbdsmG5HDVlkNlWCkc78NIhXMMmRyw+gOJAqZwULetbQ3bvBNcFESt6trW7200IlnlWcUsmpV3n+zpQAwo5Fu6VWzXE5IJZI4o70+SASp+5s6Um2+cUR8A6MUAcS0imQXIF+yGkwNYhWlM4eYN0uAkkI4V/0plKbT43OaQpaZ8xpi/VuMS82rCR89w+kiM3L9al3Priyb+zMkRtMPJoszVtBNOqmX5aEv5JfTLU+AsMNEgEWF474/AhynwjK6yY+obsmu1lAmxxCcfcB3Dww1bYB/VkUcxrTjjOT/DeNUBVLxuYxneUZzHOHsAylZlpLG6dYDJHO5ZC6dE0dTBWMok0H/24egp8TMqAOZDN0a61I8V0r3NTcpTg96uyREgJcURe/Z3OA9mYcgxkpe9NSTPmKYpmGmzENKHEVlILFsKtstssm9ny3voZndFIz0bKyRarBkaBC+8+0grxvMdkuYTcjvGbrsiwwUJL8v3zMWAHGuBqAezBy77nciMxhQJ9lGy7O1v9pjXI+0WIz4QDHdJYNn8eY028WKfEqvYF5RhnnImAClp71vaMm/JCQNS6SLOaG4nnwRFeIcXSjk55V/i1Riiw5tpx8FdWAKSiFMpkgdHQHbcjNiqpRP4eWKVkfRcdeNn/N3wXLSyYWpRbYhAI9jzzq+pyfKbiUm7vpgLwD0O89FYpKz5LYYnWZKya+G/xsplkDXD5UR4LXGpFm9P2lRH+LgpWiAXI11aFMBx3rMcA4Y3kOj9Gyj6TLxzTxDu4exHiWwnPzJ+pAxY0YPt4WkOLvn1IMbvHYNL9qd4F9wZ5z52rn9eaxu9qLRbXaoUWSsfiNkewdvdDLd4hIwsv/HK3ckZdenmSsAhEY+ACtkZcuD1h+C6mU8KSo89kgGzao127otwycUydWbOqHdYcZtWwqq6iNdUHi49aHYCALZ2ULOsU/NZ+bpZl8B35puZaxjxYtuH8thXDHMadVSEi9A/ziF67PMbMsEy7DGaZgbGhMLY+1cMk+JMoSDdb7Z6ag+vReiBi03V7pJK/BrYVSHYUr0mK0+A2FIispQ+bB16tOphnm9xTzdDKbY1lYHu1XGVLNIeEt3MovHUyps5Bn02tRq1cH9gXLOz65X7E2GktnxQ3yamSt3ZDn/4hTbM6S2Xj8p0xur1uqYWBhp53bH9I6Ty9HuPCwE+7iIuhN8ugj/nf96WxNkDhB6CVbwYsCSxuslIGdIEy0BrQcNaXkluoQc0VIJTKuqGfDKic+mM3jhraQ42bOxjjoaH0K+Jl9k+VxO78YZRc8ztyyZzegBNmpAhZZUKD1Z+kKrXiM8bWjkvrHLn4eHQPI9RAtZg/51dy64pXfViA9tuAqvA/tjcwO13ZtyqyOSH7ZrL/lVsTCBrp1wUmkIBGSNEEPEeqwd8qZJAGy6+xYHDa/JM8ZI5YC1EFzHIRQyEkp0G3ATfe3X79ETWd14JDAb6rizrNnKVgyj8QnIKKPfgCbrvFb5WjcK0aowelLDCmcldY6sB0qNLnRXor8Wwf1a7LAbUSYSfE26AGW1tKMCkzjUc9c0NVKPDlVZjjpf9DNMabvN4Jgz+7rreglxu79ihSsUdoJitS1d4rFnwC3jaBsteU8gT/x9rThq7K0atxyF7OWH7LQ2YUuMiC/UU9UbfiuJyEOkDm+9NDTiOSYqF1fiRB72t5K5W3fk61uML/YIBjnWdsa+ekObiwlAWH/Hsp/cNsLLyIfuP8mEYhXnfxY+Isu5bVP9AVGTPWCDsiVhf0lq4c5CDTN9qnP69NTpOzyup7AP9/cnIuJeavdqWOXu9r9jqLgL70SfbZdcMAoGd2pHLEb16FbxS0ncB7dr2g6mHBYRlGddCkM8s3lXDTWpfEwbD8hSNJOvRWOjdSSRpDEbZMuWkwrmn1Tyo8biEl4A+EUiNs5yoOWiklk6h1UbvFNP+jkTqRloCkvfC/eJ2arAE7g7jCbTWXyxu3w3pAC0QSwvexAEwyXJRMExvBaKEXoF2nWVRoAR9XDScNRq3fGjDLxuDXwADucge0PxtMNYTJJuAOcf0z1YnMn97HD689hGMDwAadxB2Zjofd5vBNF8rYKept1qqhDPEYxC62VlnEMHAZy30lnKzrlC3MlWQmCFxegYgg+nNo/pflqE7YqLGHAEUBLRAE5IR4yZ89rC1suSlXKqcAKGtei2IC6QZLImrp5rf2TKDmpP/IlvNa1l3z11Gk+sijuGd1jtM/DgGdoXloS+O0qTuI0QlNxI8tg/2DuHiBNCAf9e9bZ0/GSK77ozbP2A+4neq/tfcLb7T55dUKt4GGFDv35wbxSMaIc+CsCJAfuoVHIWt3Ct+KRTkDDSMO+hcSzreIInjUKfgEHFvNPDZ6Rr/C7FzquBAYf+6RGETduTlkLx3qd1+VGxMibMbTdAvKbOOJOXw8m+bTLGaw/0ykU+rXTRh9AYsbn6F3iju86xT3zhMBQPhwADU9Jfo4kR4iKPshoDmTTW8jtuk0z21k+AAwjyqp0cuHIorgh12/gE+Hl8Lrdoye2xYndK/1W/704t5AjxskXDJGx247xseLf5TiiP7pw4ZMVT2Ty2SZJn1TzbZpXPpfzhKwSD7xvuEjhwVd4XiAXizj0zLxVk5xaG4TQxmuOeRFwx08kn3Lm+spkXPpX8erJJK21ULmR/E+qUjgvn0JZ7D1BJdt2crcWMHpM0uz1btOHjUEF7r2yl1UwjyyWOBHyYLQDkUBQRqp59VPBwiAg58F+JCl8zdqzwnoGMNTsuk1jSSXKvZ+0Wd0FpzhQYBz+ImKsV1PlpUjm6OldgcrE4+gg65q0WdRhOHpl8fUTBGQ4jWUiqP7m8VITY/zfvbeMd9n4lguQer62dCgcceTYJX1TR8gYmeWvv23Ic7v2epPe0Lvv7wG+TSdFgHV8f3UV6giVXJKMH08nu/6LduMWcC8I1lIccpjZ4w4nGo5TpasfbeAqqCuX9CFYsqu8EGHBvztu3ZBDHOSfg/8dM/pMgRq5HYUqXMCcIvX6TQ5x0irC5Nz0G/8XUBlD4DdtZrYrgmFpTgNd+WGbGQO2khmqD3i5rZO7ZyCWX5bJJoKrhYzlxGFANyotgS/pshl2Mtt/+Cfw772O0LQxx7+qcVT64PCTcjUkbXkI+/eFT65+kP1uwzJKHLTh/b1a1XygAe7JQCG4PRoWNQA7jQSWVdB/H+qo1FCvooEXmIDozehTZLUVZGsS4HNrEsQr+ix4dwhCjYlMHuIBEVobGR9u2Cd+uY6LjNpVKtXCkE3VZlcMTVQFdCnf71AhRIXS8rJQsGtXaO/iGtlbeqmYiqmyMlGMlYJMLC1Lc0IyDNg6l1zF7mNMiUbomgQPcsjISU9GiCyAM61Wv5tq8idc+mNnSR+xtCAN8QocPOk0mnrvON2Mx/I84pK7EVOPWW20IivyEXtUce87drTzqs0wz+FcCZgD8xPcFa8dQ/ICHLEdx1YLm8RsZfItllqXFxfF2SVpKCh+A561ve9BnylYUvMYeqQmXgc4bFPqzAL4zX4BzdEO23+Ab9hPCbQom4UpPOc6V1Ih/Kd6afdjwqcyo8hw1rCYi2X8x86G2Q7oFATdAOvkvrUv5sLpfcbOruS0VhAyBnw7apbjBWG2glWt8lLYQkzvdSMn+XRr/FjXoN2maqyiT4ltkzFn95p0nTXR70QfP2+BJOsemrHV+LDmj8lQXi2/RHHbt4cdOjH5SztMj53MOFlyl1jdRV05UH3302URPjfqaPesWoehJtmVp7nLG3L7lajVfK6+0ECKQv5eLGJtBl0Wz4jhCpvsN3NYPZLT9H4Eo5Vjgc6zkQ5byX2eemFXwa3gFbpOjmB9oKfrxavT/egbswTe/Za5emUaYL3xKqcQqYsScgcUEKYZjzmQJZv8bFnXoKhXLEPLCk7CcqTQ1etpqQ8o4EIuSqmRSWBbV9DYx83jqzZfXmoaHWSq4I7/FbtSuT0nlkATq19KgD7dXtIyFXmWwC6MR6OhTLmdlUXUNlSfwQT1dRavY3Ke/iTiuMbiFUbBMh6rj6AiX/+rMTavurldf0KHD8evfNNi2U6KHYhS5cveiXqiHbLMVpVRscVp8Vmbl7xWlsE6nOxfgXD+lJWjGy5T4pVj0QKyHwx2lLP2fT4aGFybVpHhy2+buYyFJOh06mih/kUTS7Ffi7lrzJsG06IQvtDG6DYoADqf39iPQ3LmnRuXUGp2srL7z8WWtHnOkptA8vTB3QusResxLd1aI40+vreKl5hIeQq2wIswPmQoTvcfEwA5gKAl/6Wnb1LEHas102CIURXheskkopjRnJ3FsJkJAo1Qv6+pv/1aYO771CGpqbi8t70Gc4Yi5zWutDs/uwgC7+E9BfR33QkV0Y1WxaTCF34/Fek1yeJcr52Z0bfOs271W58QkjKiX0nVMsr3oAqrj59NWgOnflXumfd4KCLzpk7joHjWmZXoLvNYi2Dfqg70F2WW+tkpbwqp2f+HmTgVDXaXLE7mzphSVrIYxhKdYdOf/2RZfgvV+D/yysP0/L4bBzR7WxECRjDK59Yuk7B2ZqO9nJsltsh27LN3U8MbEja01TXIVlxNCaPvX7+hYv2M/mvFcT6dzBHadFl6fuCmTw2nAwIb1W3veL7ANAEMb1vLdfN5ebbd5bpZqDS6q+GSXoaMIcFexDFyens1dVfNiRLHrkwoRvmbAVqYd2cujaq5DqHdqZil4/KTb/69bhFqey0biV4NVG5nc8XFxzyTP4uLGycbFxaP5KiMii04yUJHcsnfv05C3atqBB/QKDmS/zJOhrKO5rFx0oUwtEb2bfPF/pm0CmRFd/XUut+M0ShceO51bzsJOYSzhxQ/RmhyLvy63bl9sVNHwhrjAyfKV8d3JrXGBDaMlU0DW7eDDEr4N8qPAJqoVIq6/Q+/Exb4T+htxCWtFwIZCfr4N2wovWQRzdLJ0uONPOlx0t4/SUcVwl/QmKWiKB/EvjUqZDh13MPw3Wc7YZl9JRxXHS/DTVSeDOVl/78kDm1bqi9PXIlok7H2kmxKQUFHV2ClP7RU+u7MsK91EmaNguvRriRRGZ34U9jgsrdy3m5/92qbgxBIZOVUNNiveea64KiM5OTTQ5bI3WeQrU+2ycFOYeDhYV+W2vAecgpq33x4sU5JcTggO//h4YkmmTZMvM1YY1qrVCr1hm0gC0I/udU+5x9RFbl3RaYGSjYhu9dO1z3CCIkM3q3RVpliucxKI0B25V/CFbyzA2j+RAKk4UsiI+unzOM+PUZUtO5ZFF8Q4zPVsQkgdkIMAOxUlYKFV6vRYw7rpGMn1106PnDd8cPEoKmjHgxMLK2fOGZ19NP7j8Znhb9GeslCX+0eddQEyfaFbpwpllHaFRZJixynqoPc3CfWkkgi+N29s3jZHQig73Z1plt7S35Amws+OJWiawbjyI5v+UJp2fdNrwfG0Xsx8DeK389thgYDGuu9F5vTGOKq+KcogTX7mQCpw8zhMpv4ZKTkXwU/jzc8fyM4uezD60DxDQ3E6DiFa9EABP9mVFv93VdBscTa4T9BJkZhny0vCGyB8IuHNKA9M6iqfllY+xyQW8/L8KcUz/ns0ftrkWlmKab4iPtW5cxWYGapgaDJCvrRYu5LFjIhXTPbqP6PN6zn+XXov62CNMA/WQ5/p21RU3V9QyxDDo3V4/RbnRYkjOV2eGzJ5UAMh7PQTicG4koWLMmpj6rPM2b70jhTxjcbXw2T0ftdNr9Pj4kVHvDvpoKqg0zcOG0oJ9l7E21n3P4+DVDIss3WGm7j+mkE0kkIO/nczXR0JqfTh2HESXcLTLFjiWOpsZLF7RhE8xhIUawKBaMXgjnzxv03oOWPRZjzlsj/NBFmvjvFfTQeNqmga9+mMEawY8BahjOGKpY4lhQWNhHIwcgAlSLomOezl/xMnJA9Yv5cko3Mg3XNxztG2SzBOp82LKXguz24bbacqPdHhYQYFG4+CEtg/pZbfJjdHcRN36FPzVAr9UKw4c/dZ743sbpUecwsdv6ldwwAB4PTYWOWN3blj8wsciTkluJ8qMxdpJFJcj3F7lvq6SP7q8vm1qtyk6vL4M5mjzvg01atbTLdERdOnhPgmZebSSLQ+Y12wNVc2JX5mvkOZp2kaZtcylcuPXJnJ7iB8NX+z1giTt2znsxRfpLQ5ipVUEvtoJqP8ZjkDe0vWlR9l6Pge2Ay3JDcbQQzO1KeAs2lit8a0Ty/XMZ90zH7C0nHdJCz2iN3fp6ejdHVVrYiuW1MRXlKTblhlXA01NWP949ap+5S6a1fB+TJqWf2pcFMgaOMvdzEa82/QSbH4el2xk3n+EzCiU/ap1027mJTsWANJa6NqZfC5aPWMGcXFYFhRFxhncEoFaRmFPzSCxgULIYoMVhvihO8Yc1krQIhPKx+zICi8EqVZNUG4dg8xDVMpmXjvur0TRK8p+DAiGc7hBG+M7DRBfoQRkoRUIRYWyJ/cFR3Z6nIVFOzp1bh+6HJ4cse0st05FCOEztZ6uPtBR7BOMHcXdxylo7jjF28dQ5y/Cq7p6sKyYDGQA5Gew5TIYMlwZ6nNS43Ktx5tip8+8Qw2qx3i5WYUjdvN7aZpaTDBHm13BmjL0hs7+2Khqb1mK/jmRKpUoJVoBdLUE99YgXn+AISogjpTxZ3V1gTuxwtTIUSLwNE0EslVGUA7XSfxUWcFPvyunR9cWaOPD6oQaPas5GXFyE5CiPMqJHYixcuS+8Csya8Ob9WE6TjLF81SsWG+dD+Hdw2yrCz2zz/DmI7HihpDtTSHENrn1eBG0l9v05orNM7joY3efI9vQpI7djjWmPxnx68ZMh06a22x4X9h1bfP0QZ6p0a8qqs2tDmqBN/18SMGwED2kUZzfsV+ZetEMduPekixiPQc3R4j0rGLDUXiHxrQssNhRrnktkNBvFMs4fVfbcuBIo1sn0qaomOrZBijXEVmhus4RctYHSKAw5gOZ8fOgH5gbJ4Q8KCzkTJP5jQaK9Kk/Q8gkcSMQxvB+uHFw0soUix6H66FaDoW3IUdZmD+wxCq43mRY84jB+Avcso2fypdJtRh8KNHAj1zqp2tw3QyVPNu/uSSfsf9tTe+qqlWT906PFXVM4zsW0lydGGarYdfTQZiCYyogm7Pqq2WfFYOXauGBQI6KQYknZBaa85Hob3N6LyjgUKPC+5FFN51Gtvaad3s1ze/frXI8721FPxdmzlFkfJ9KwlVuHMA91gOQuiYF5pbL2A6woG80KBbhaNoy7PCdLdV+P4/g9OPup1qO8zeC0Y2NF9gosFBj4IYrdLE46tCS/M8NAB39sqB3g2uufi/IVlDG752K9mREzcQaPu6xptZg/UR48o9/nu2AK+b+Fc6O1pry3W2M715af9rDmDZIr+Dm20r3ZOWJ1iLpeDH2ulztT76pHKOXSwSij+oKXoebATVUyaT93WiVL6qfZSM00dCd6LVixd78v12utmWm3QBmyMcOv+/NUqMO8EewvBKrSe4E13Fy5Zdhq55zidGi5QcJr0R8iTX7gtQsYMnv/iRP7xhdrnGpiFa7XsrT/S6gtuXJhenBMs5tVxbFVdoK910qT3USYNhODqYLTxECTcIlfv2Iqzt2awBvLK8exKoFMNXVdVJ3CIaOzVYvBy34riqyxOD2xBqGtJgoxu4dO5+Uwy7mcvpYUXFDb2WraSL2mRgWnBo/pphG7DPAf2ejM6cVTyfW+5vKNGU8/3QuWj13LnpeR7OfrBPq8DKnoQY5V2NNTHXntrjE9zxq6LAirxGx6jM0SPd2kLoe1WB+91k9RH8fH8RItkpCnxGsbYwOtluT1FJflpZTLlJ27ycVk9ReUcOb1jWbktz4snVEgjHGKGJkyEBiapPQcRDGG1AX78/aVGEQmsX0SqcqWHi7VpIKJgKG81yHdfutnN1crMRnioQQtrt4rCkZbvn/slopxBUOyoMfuNRKmaNum4lfj2V73/XfPNMoNUwL9yZPy+uyJPAbAME4YXTOkK2/0xIE07HwD20c8x+gTVCx7w3fkoRWye8s8+IwMd+hPbfZlArv39sBdeXbP/dyPCWQY9qgKYThxFCA6GG/gNka/5RVMf9NTRZE11nqIknnAQZTWz4DtTk/5Z6jDILQAq4NlldvvV/0YSOORya9Jit4+r+vxyl5f3gfZ51wXoTFuaE1t8J12H32nvtLB3XQ67+bPERAUz91c/WobwLPfVHMR1RBv+esvk3CD4iVMnNPIGO+WTC9CK2jk6sFyCTTsFQy1ao4uajJ5iOeUBGACZVrlZbs97nzWzVlOO1kWXT6iV0SRiIpzMnR0Vselr01NYAAwbvdQDToeivfTPjYiZbp0a1tjcfbHlHdV8vFIyJXzv6+mVA/qyDg0tDS/Jm5fdDJDPif0wdc1u9y8DQ8YuQg6B6S+W61jYq5t6TJJEOdZ5ism6EfRLi8gHZHSDC08pAnxVzWK5WoDlMLQbxaQj2y89AGcXlUWcSTsZAy87l0bwulscigAXoxD++W6CtW1unRS1fUBS73Cy8+CGDeRJLZHUSFV7WLmjxVx364fS9k2dPg0tabhlq8sdf39M8kbh9a50JzdL8pkGH9LqHIl7n9fyIVHttxk/5cF09yBnN446ujI/SxjBEC18ppfWtNJXAhNmSA/H/66KSmpvlDnkbnSdS1SwTahxYdYRoxbZ0CMEHMY1nh1T1j1q7tF+ECffTVrBgZM1aSKkaV0Q+cXOrp5RRkRx/1/hQfnvzMDk2B8rRC+ISEdVYiBSLzZIuhntd6S/uh88vklbX1IlHrd73CrAuQ8J9kfilE+pbITbdfjm+6OUilzR25RtxMZcXQqgBg6fSeKXeSE2iJ6PM/NYJPib0Mzpb6NDyxGi8DsutN8LqsRCpg1cy9QzLpKW57uoRbhkjrG7a7BLvsubWxcuiN/iR01C8AHdlTVj7KEn9WpGCbX7FaJbxvSnq3LL426Z340JcAYumVRfZR1Fzh8oDscc0VWNmFjD1rMrq9oANG2sV1d9J5meXMT7CCHJc/b13OynuH6Pt2zw6jx3Ypb8HHFcgQFf+oRKf1p0Wk0La7PPdrZuKgdc+QTd263bI0rlia6QOzVl7Ok36QIabcEV+hBuCIL21O7sHJkhMH7tb56zVx+8g1cvmgUfFoKcDp6rFFCm8NyO9oOij+3eE/NjnLxm7slJ0V05b4nYX5GmSTCffnWYW6xQd3iSn4ow9Ylle0nejq1tMEY7LqU1CtnbSJDelVFCe+c0Crool209fwYIQT6a3aBq7A53bB82IY+M67MKVC5gOx1JwaBDMZ0x4rkgkVEFITZfwlUwhA21FBj07jBkeDUwZYZpiYLMoIBufF+3f+El8PjwvaEtZMDI99+PDYh22fXQlSViLpavTuk3sjmPAthQqeEFfx4JoMPiSF69gYFRqokMXK76veymWdn+Mcvo3M3LCNtJN63GBWByAL9Rn4Nvjx1PKMNJO1zEvtDNqOYplEF3HddKe5mbRoJkftN5LjGTr0KN59RcwHaOTYJijRi+ATn61OjXd8Nrtl7YPan26YawdnZ84bD99OQtGMjKFBVnVUX7XW8sO0ZZ9cGqjIZDia6iFhTmCGaok5wxbl8Pm9WS0zvfHA4bjBZHALRZr0tCFsMdq0PXQz5ewTyq7+/3MX5ilb129BoH3P2VVPzVFyJu85OgpFHpAKj8wjeUndDUxf+dO3aGwuW9iwkPe+lyUMSfdyBcNu7ije0upSKbVN/rK5wpnxqRQKdTrwAwplJCYIlF500EEtP4aGx7uMVl/0no8cYLSBldm2x491qM/nZ9anrHw/0OuMbkrouW1ds78Uuj33zVyBeASQZVwMKLMwUYOw0e09nNuu6X9QIDg+518RS4+ecmyu5L+Fx2e3qARfRV3Q0RMpSDC9f9JE+mlMWg4N4JOovQEDjCTH1unnK2u9ojR+UtNdIau21Bl41ID7322IO8F4aSTnqDHN+rYpMFQcB/GCBVaaQacx3XET5SrsuoKIohf1yBPp6bZ5O8g7O5FXINB++DZ/OvzmCM7NxQeQheV8rUfDOgGloHpoHpEncB0M6LVWrXOsccWb/7Tji5eUKhh2jc+dLi8eqGOgxN0LxEVrt3A9EN8Q4IB56tOj9Gj742V8vCvD9fytmiV1aVbgYLZYCzTs8XIFovRwCFbfFRaJ13H7hJQ/QFBjoDKWdhKS3t2pEOiQ5eX1jzBdLzaRJpxjnGOvCBjC4avwGk69GKfHsfK3wq0k2J7UeKCAdMxLhQ5i+g6FNqKPP1zot9CUmaQNJA4L/hstZukLLO72l9tFenQ7YEKwJfOAB+KnxU/AzlELFQ1+ReoB3GBDl3urbrH0KHXngS921Edz00DphdfpuWn+4lBEr0brmMYHAkpAUyXzEaySifP3oaYmfj7uEFP1zEulPj60YZZ/vw0NLPtMvkqM2gtJV5mEPufcSVVJFOHsCtQyD8ejAqozRj7JxYsFqNJtrgzQt4fOwyGBi7/ky8tKpbnfe+p8YlMvo6xPVQNYzpmEtH4FkrsjO9k4l0kokNn+yzDdB27R0UUfzb6h2/HVFrxWGuMGI1FYeZ6GAuGWBzAQO2Vf/Yf/Tmra09aHloYCQkEKMQ/DdB3DwFlFJMLCFoTmW4HtHkPJqGFTC165Ck3RPrGGi+LwAKhApSlA+g/joRYdkgWYsc6Ev6TwQQTwaBoVs/pMhSuRQUhDldF8rp8WUW+gX46M3+carwG89L7B3wbHOrZPFKFrnkjG/cUfDtdOqzrqPULbgqL6W9LuacFPMYKlykBeAoxzvh3fCzQAxa8FqW4k425uewUzOCO3UIDg2CAKGoKY2G156Qx0itI3+LWGrAUdHHSaLHw/DaJemPzl19AFlQ7Qoi3HVn+N/8u+nceeUyNCwJkQX7i5OYolig1I29UmzWalDwO+BlNuXGZjofRie/BUEJCCEaWANVoqsi6Jis4odLihXpWnfpxhODr559dlu7gSzBYLBldnCnlHzo/9r6VM5tKep6HIdI5XqORDOJ6GMJlbYKgNWR+JZISuPCJbi/mVGXkl08Wa62x/1yXUaUUMZmUnzAozez+dUprnC7J0xV9yHlHnqTzNBx3J1Q6SGtJlU3z04teTetd7fJHP2S/huUkZjhWroXi7cbAD6yOJ7E2Q1luHK7AIay6QQRLJbBIDEvn/XxeKdiqhjpgsVIsUYpFSZjFLhvh1ff+cpPBWgTax7xGV8yfbo7yra4iqarVnpjQDITHb87WLJfHPrNK6OcgaUlYxL5TfVJ26fhVq6hyDnMdbdKKuKeyp3HEtHd4xsiDn4AlMX9UNW92BQMiDqsTRQufcdi7DSqVbZxsnM29GflbN2GIEf5XITmunOfSox+5DUEhLeXKJwnhUMoAoj+noSvUJWBgLRF1jcZHAVl/wWoJsNx5lvd5gVydgQaFfQvRtAwbYb9t52TmXnRxDA5ovW+TpkeGkvTWG+ydBsX2deZl5/D4YueWtIst5aRGezEh8Fyb2rsmqm0wuiBf+b2UrlszZrHYStMvTBqAYIcTmxiOnWbSI32+lpbW1rYWpQHBbmCwUNPc3OLQGdJQN9IZI6BsqyNo6/NF0pmnMZplQYsiXigWNGkR5E78taeHCaVo3pTfAsUFAUFXtTYuh+xYu7UNd4SXFxktpdAr6MyZwcZKfBlmDyaxz/Zyz1jrqe4/1I76bJ/Nvy8kHfN809+b/0GCh1MNee1QxhsI+f3KZymmKv17rH648ijie1Ut0BXkgvx0SPBRZXp6WokxdV9EstV3d+7SnCmFvrpWN2IPVvMECyhygArzKiFGGEPRmDe+PHbmPtDFDLG5rsO/mh2pxU3f8DTX61GgViOIYisKAPu/ox/kyJMjDV7Ozum+mITCijEhSGkK4yyo0v4Yrsh8X2pSyVRB//sLMtZIKrPdLStq4jJC56dHpe+91o51yyGhmlE480qdOMxP/9XvB0AF/SsWHUSEroxo4tcxYRDc0oLKxfuwuXRWBG/r13W6T9N5kWdVyZ5RrMy7kaXyZBDDU4QUhsgY+ohsZPozybPp/7/495/ssCr3Zo+DYfj376il7HHfqBpNma6qmll9oy1zHd165dx5SiVk64QdzvHxVabctp9rUsy6fkURlIJM2O6XFqjcllCjtHzjxP7DKQQ077LVHN4maZhgqRyysCIPgcbPIJo5zCOjaTBy4ybo2ybyylpC2VOryB2YnZo4MR73vWhb32VwWXWXggaJ2Airjjf5y2yJV78sFprWO8oOQY2f4azho8av9kB2aNTAIBS7rNMd8HJ/tFOzYEz4Guk/JznMtHNwkNV1bFpP7elc6RqpoaGfkas4/p6SkYM9f401h3O2TZN2krmS4jT1wvyUjhUutGaENRWS8fYya3Fjlr3IjLcxJHIp19fcWsDgFCxqOOuGTCnZBZVFZRN2xNiTtEcubXXaydxr3Hi96fa48VEmdOzH+sfkx6/xghAPbm1hpRyCxvnFhM/5zno/ND4Lbux7AyV/q7HrnfpPKlBnpK5Nh1adwk8S+H3gzXSnvbgPQUZ7ijtFgLYtIU4R/P1QzWorBCCT8794Ri1fC8B9dPb2Gf/oVCt+vi+ma9ipGaUPzWHh5ocZpalsDR1iootw/VlHcTt3FhYvDiYfix+dpj4gmBaqYiaEQ7BuIG3Ph3/wkcXrEO8/SMxGOM0FmR2BzmEJLAZCDregyUaHi06ozRKxW63L8MEP022rK5DXry0djqGpf70G2CW4NZsUf1REOwy7WY0T+UWbXbZJHF9++/y/FKbK1Lv6onl1sjxvefDN4Bat6i+V9mbJWNkXPSQC8+o0RH1Wgy0l2dhpYPtxWpgOe9I+BTNX3BwKGf4EErmeiDtFnQhVVSeh13aC6wPb0UHttGfgbDOq+xtGF6NQAvQ6PC1MTan/+OjH9VMoWFv5/5NaU7JJmw+9D0HQtQyBAE4cEx9adnTo6LJQ/JhEWCDYHWBZjZ+eQOpNN118fZkRciCvW2F03e+k+DlJi1SpIUoT9esv2Z5zUxfO2D/1HS7lUCoik24uuTVZ/iDWMKetZUlHSt6Fu2b1K/E/1pA2uZRViTB+VXuRNKqxFVzeXBIdm5ufJkjujNC8pwMRks7ml7bIjSApX8duwKkoiAbJXerkxxR7JrRjmwurVHGqy7sL8PGelYeyieNNhJ9Uu1AeGU3Wz6wcBo89jLuhJDyXTpH0EyX+u/nxHwO4PGg/9uhRN2r7mbyaXH7Xx5zq6vtRofqhL6A0erdc1ffrCSG3I9fJpJsQVsqMZNerz5wsu8fjyHDfOI/TTSzn30yXCFafV8fXaU+uYcIzQ/u+64c+/bSXZwUY+RSiV1Qk0LYz15zU1iUkmJTSiWj9nqtw3H8TZq8Qn0/kGNjekNfxik/D0Cfw1T2oD+KF+EEC1tLomWNnJisv+ROQodkjN7ObX69UyKcKvYvHVjP8TP7ict9swjZVrlj5Ort57L+0QiTBf8kQNX56Jp2mhQlekB+Cq7y1AooVMXuyvDqydnVb2OJm04q45pTgowJV8erIWnn15D45t/kU+mYyCX1Jz+bv8gkpJY12/5tIRbDzrm4KFO9fR0P+OHAT/hTICPSfBPX0O0Z1/2N/niRDbzyLkr1U7e+q/7Ossgfn2H+0ViBRLM8WDh0e2CAi50dNoiTTJXSEYc+7ZTlN3IoNhYdiP21OW27l2RkIvYY4L1ySmEyJNuz9hcbZwvJECT5E3ztXlBS++wwBQfByZ+dNkppIsWfNX0VIvZ3O5TCAOf/ZHSEqiy4TRew+XTR6JcSHMhshb95I3JOErytKijjVktaPqktVWsupw0mjqkX7616w/y/0d0/ln3dZl5NkxWK6FD34LmGatJbGGH8+9yFaP3WiELvBczoKVn69m80M7dr1BrhwNaykwdhJJvXswH5wlcW4CcqNzD8CM5gswWFhCFHYMWgJC+KwmOIKuKrqGYf1x3mEKiTzoJs+iy0lWazrT5yBi7i97HDOvbhiroCXekrv/lkrjZFr8A26KRyHTpxhIDvtXGNgrHJ+5Oy865GcCRx2Nj1yumI6rIrCvwHmP4umdAcLvKZguvfXz9mRkADr4sAQE7VqUM7YpbUJ3SsszoyDuZJw88Y0+zRUmLNEamW62Rw3yzeljO/UN+zkNrAljxRcw79WaXSrn7WvRsi6HuWu4vdljhoOxmGL5vf+ygqxCRvGqGXx/NDFmXu4ezdea13yrp/kW3oCR/d08DCXW4HHmHJN6exGFihrwX5l8YMFmWWCeTroOo2+oRRbN5+PQiwkXVSm2eTrSsr9Hq6Fk86IpbKI8N0HTk2JIuQZFE/otAqjR+bLJWEqMaqfIrfJXfGHCBcN+im1tb1fNugCbWOFlcLnorjWElHZvwpNhFKEWnlTGhPzW+DSkrwNu3P3ytJzxjD0WF59QVSL/1JqxehDpztpHIxbSTHr1/oiGmOiGTV7B83JpojSMlVHe6j8umIwQvtclBEtAW9TLDHL5mUruHmQvYQgRfFDUjCzne7saqBf4RUw/O7/Ho4sjxd5EuRGpfjnd86MZsiQYV/4SwWzR9LNiiPZL/0MVC1uzxUtEhMeVacvB2tRPbhhykmbhiEKGpfAF7FghHAO5Zhh1jUhGknX/jbpZxWCzlQJKCjkUwKe+XX1lUg6jiK0Bno9Y1w6CM7DqxBCG//0O8jQuW8KDaPTaCYalnkBVr68fIkD5cYH/OBVqYaBjOoa+fTIi5i1oPg4i6vPmMqMNMXI3wes+cqXv4myF9p76AnTPOWDqq8cSeseCMiUhKc2houFbN0Go1hY2F6cgrC3iz+7Gp6ETkExrj5DNWHq/OUbnMi18ThS8vUTMR5xlGa1xD2iIC5bReLElxRZN0E1TS0Y/WFS8Tbo7f9/H0/jRWStBBkQKnn2t6q5IHJqCGELOY1SkZTIaex0h30bxaXcYY2dRA4chsQYO1EhGwlFTGotUv0NZJtYFI2OkLANrsN91IQpHD+r6IoOootgPH9Ml5fE62AbTCJ0moCF9ndHWmvbHoyTjXvQlujK14jA/5tG5h93crR36UwYgdgCTqNE3SO0N7U6RP14v0PU1Cq0NxqljZw+71U+fUzhP+Cz0PzjwkuO6cLzYREd0l3xczj+CVN81MwxYQJVwT28PnmB5nfA+jm2mGOCvbm9MHK6wROnehI2W+eydCD7UbcBxndz85UmFY0ptcfjGNudS2j/oupbbNTbUcqkqUwqnm9cN5GBf0lc46Y8xIQuTiqodu1Ng+mT9G9zAXawuq7SEBPCYDnjilgGPKoRXrT4n38WDtEg2rfM54xhaMjn+/rJVze9crzFUrYVuD5ATOhn3U7mE2Xm56tQTIKk73VVJxUsRk0IY6u5pE0mMbPRABr6TA0NGQIwdgajQYKhoX//XbgIatTghiKWM44Far5Ee521phFauPjff4YWUhCCvYOhytdCEMPLCgqKix0QkDPlbeaSrQztZ5eOSDB01eeZyidOZjcI7znTUtYioOQAcoygMTQ6nhhYUN/7NJCFC//5Z9FiuDFqFmIganDa1S4HC1bYFhhWQPpJdDjNhHdlIHVvHI6tQzLzvom2T0G/yctE1pHr6EMHgP3x4sZie9oRMr/vbXksUu1ZPkwKZGnArG0M2tOkAnJ4dyeG/mpKA5nfhhhYyuoBf8ZyCM7Q99Fxodqf1N9SqOI+kzwD5reMUEO05rnOH5rz8tW1frUQ5xTnZ62YW7g6BRz9jS3gBH0ZiybmZYCeKLy5YUQ2wtMEOsf50rBoQzODt2MomDHsC3JgE+MDHRre0NFbcaanLetvhDPAOu7ThnUalTOPhgnY9am5w0tcK79cHmQFlzdJN/YnVlbYuDgTyVM5Nesa/k5V3ANy1qCOCGOgxbJm2X+qXv7A10dBispoQ7CDwGA4FXj5XxRu5nJSdpXG9W+V1UNChML1MGaV1fdvLY3blcLhNsPof9/KKaA3LuLwrIsW+iNslGBt4ULgAZYK7og+s86lsYWMetJduHmn85/3aTgNDzsnsSK1iCPAaPDn3crFN9Nf/AosO85ZZAT6U/q3OmSWxfdtDGuy4tYvFKGLr/eXu5eBUwZgUDc3vIpW5wD3ImuElRKs9S9cPB7E/e0r5hIchiXMmmyDXr+C1KZPw+x5NJaoNpCS6lg11wWn7MB3pMBDeZlLU1MCtSIWLU/0Mb56XbECX1FwQV5C/IBFdXHVqkJ5MAbkhfSCAspfyRjSjmC1EYG58wKK9wkuWWdFP7emgFUJYNXXf6HWOpJLvH913NzH4WPr8Lqx4RuvLTnRLkPkjEhoLGtMWDTR1dM7saQqNMnq/kNNfQtP2T0l/2UHtmFnMJZbFd8T362P61rffhvK4REkDdmncgvcanj3RgjCoYH6qVZw7S9qLska9W1OTsJcBkfpL+LVD7VkCAOm98oDfm99iitqb029JExRKmr2OhyZNo5aLDfbRLgjjioydxeo9odH/xY/XxnmvH6tzc+3svU5SSkGYQnhUdY0cvw+js6nSJAAy0rZyLY10WsFe2+DuyPWmB85ZVtzUyLnA++JUTOzphfhNOwavm336QVoTMmuzZpQ3H2/K0p+DBpVuKvYiDbFJp/KKD/vNy+LKJK6l0ms8b9MQ5YfJY2Fndy+DiGXgczvL4pIil+7fWb2unit/IywAq5ncIX6waj4dhguDgeJO2j2L+y079jCrZu/Yg3lQ28gwZt/oT/eBoo/Jm/d1MWGfk6WNDzlsq62gPFgpZdsqyWcpVz4zDPJszMwt5RwtDfk8HeNB61X2dyndeO6K3lDM4gSNyhibHu4S+Rxu8mqdbMbGLXNdU+57Kut48HK///jneBMEQY623RENrKNs60+d6Yt4Coofi4bcT2TPHMBy71EnqHHEROsA66YRHOGME4FtWpV/DRr3+Cvwn2CH+hXL/gmgjMPp6ZAHfC5JA7BmYk6Tm3fUYRyPbJ1xKxRgU/K4wd5fAEfMyi7i5khri6L6Lg3G+zYflJgdSpv2eSfTMtmBU6/CXR3FAQXlvoDHRMCoUC7vi0lsdyWVOj3oV49InsG/kKh11OQrFZg61H0uyc/fGvmM1Xnd1l1dBylWU1OIyAQRu7BXujWvo/ejRoHLJ+WNwwWNRU3PJk4Ji5njCcDi4qhdeLkcBE3s34Nk55e+vD4ojAhgZhWkR6bKTbeDgDkGRNaNlPFY2R1RrlzHWMzhJ0hfkat8Nf0jOCNuzy2/vP0WlDonFNqzSwpGFWdda/NWR9QvBuj/GJ13kRfQWHPN3sjS3x71kja5QfW/Eabt7DNbuHvMpc9e9ObX3M9x5bXYB+VVn+rVJSsX7X6anEVnzwC1lHcp87fubCwzTJUhNOZ1zE0GbgKBzdZc7nJTMC+Cn4FWQow92E+zqqgrlMVHCwEDGDahMeXGOUcprPc8DSFMDl/FV4HmQXNTKwE9Kv6tShBoj1RlvTSC11QhCNrcf1XMeUHOy1RPShJoM8Pbr8KmB02Pmf2Mu4WuLv6TgGlAtm425EGMC8TguZ/XT7FkFM0JwPem0q/dW08l7XIBVGuzY8et0Wnz3LnCkbTblwFBSH2EokV8U7XuwvmjSJW5aM3wdVFLPai2+CWlGuf7wvNvnrHA3OH6JT2tIAshwPwAsW1Z5+seYwf4szDO8TbBNVhc3N4VmbC2JsRrZ73byT7Z/NXi//W/0KUi/YbY06Di+N5StLUmVxgexCOhZc+zLNXz1gbk2g3vR5MknN4SjbKyM2v2zvMpo6uGv3HF3sXO0GyXeWM4vQBs4Ufbs+pz5XoN8f5tL7BNG5gncm/bagu293sLu5rU1y+1rtg8axHwMXbPIXVVmU1UyzV82pn8s8RP8pp5oIcTURHIqe43oGt2y26XWn5dCbfk8LunreG/2rq71zOsxkj4KJP09s3v5Y7MuMZ58/LBHTun/Ai0zL9SXvDlPk/uBKjPr86pZYytvLU4QbBrFMWLj1oIeDDtHgxPt33waD/6YPwqxCri/F9uALPPlGSa5Xa4OTAzIDt8fF/eusH8CNS8d35eDIXJ/EDGEJTE814uWe03CPKyvZoQWmxvYK+WxanMD3HJVx/FJ4zsQP4yd76+fhdsfTIEDGp7sB+gj9mnzZ/3eWCOLCcJqGJ+/vUV+dOhueawX2H3mOv7Q0gzIP4n769/9tOaOgkgYZSykGikcM63h2PZr9gf+c4RHK9PYpa0UUMLGowYhD88fta4n+bwSei34zMjMFPYfQ5cwWrocWUmqeOUsfZ9ArkYx4WUgEJLANmegtEzzCVgERXjuCKZA0dTabw1QM583MaMIrCQpAtarb7LoAABACEv64N8tmp3t4f/PI4IIKb9Axw/yr1szGQy57D4DguEeAe/tzVGVP1j5EYw2rRakOMHfjQn8TB5vHT5Qs5pJBR8Mxb+Z/oKnGg2T85I3JsC9jGxU6x2LuZb9FKuIZ6YxLu9+ACyWol1sonpyvGdfJFJK1oJTl9fLD5Z7EXdQCW/9ybRj2KMUo2LJdoM9gDYFDrp8aN5RQywmSMzXm1Y3iXk/ULwJabw67bVNvIXDuLrCLb0kyVbdKxcR3f0g1aC4zx1m2KJKnITV5YT3ecbT7nnkLlat+hqZOyEcMzyTMDKGrRoB6CINira7VQl3ltV7QDZ166Bx4p7+yT8VzuT33DZv65PVBEeXlYKJlmC2x/I3qTS4E6Li+dCkXB6DEZx/KfSZ6lvEpOiCIFtiFAMm/xX5VUSpSPgOwK2UhBfW9cb33BJ/ETmV6lcK+xvyttLNXIG7eVsyUChLU20NZEp26lyO+A/GMZd3DOeyWLvBM5XjY+VbAXALD6m+a6/sWNdTXNc0UR7JYZK0eH/2sMeNSeqNr5rDI0HeV1a+fg9NlH8iLq5zL8WA6D1bZ0ST3nLoTguMWCE1i1Dk5nYDqGQHdTJCa620jtNMkv7r/Iwxsryf4hViOWq8dyMVb78JImTq0srLaJMww0Aj8WeVPHhjcGcXDuXE1tbY1yrWGgpobQtKZM8PhPOatrHFwk1zzA7gKal+MLHcbZs7Ktx9U1a5bbreJR11GD6yeU63MTaaOrOjs/uqVc+x572v690wy6kTuuMkh3xsGJ+gVmz7lFYC/KLmjNHjg7odzFfS9rZ7YUUXPI3DJHzleUvHIFdJiGLFCqDqiMvnGg2rUlVm/hbB2X+uFT2dMPgdsdTOKMZRdbu9dvAU83jNkivukq0QjuRUpW+43oTVxju9M0xX8ACnacEeohCNro1fvCHeCXb+c0GO7fp2JiqLWAoWGO7csvNRaL4DSuf3fG1VXV1FTR+YChD88dq+WuFI44D9FouzMiLkJnI+kQk0N/abDP6TaUJVQeQVfXAbdL/GB3g7rVKFLxTg+jPIECEIcJgWTcuAwuvQKXXMYHZnLgAL6j+mr3OXB63J3JGAwIKOB94A1ABICxO5M3VT55fKlzVw0egDkzb/7EfrepZdQbaBmEl1wGQxGITke8bvuISwF/p0yjnxecP10907vj81LgnfsZx8aONeyS7DLU1h5xhQk4P7z6D4uSyuNc9nHl+HFrosGHfxzLuOoY/5F73LpuLPjzRVbgumDvWFC2dR3G5aGH38mHt4C8KdhNlLkxzuYxz63fSddPpXVnt47KrtnIRG9izCPzznC4884cAeYmbAOTs3lU4d1y1p3yUYVntxIkHUpf1NAUWhwea7VJl4Q3hRoWpUPg5Yy2cIg9oSdHY0vM82mYbILNUQJFeSbeGQGWxnDkELNnDo3mK+7+rV6gYnK7SzPI7gjw8m/AhUG+VhIvo7MxGszvq8rq5jJVgtKEhLJZSnpTDOiEGdMlcftfjLOqsusxBIZgFg2CaTAzX5Pg1bidPcB0TsAd+foNm6aJbl1PCqlGwwehE0Ef5G2AchsgIP3O2zO4MamZYGDGNVe6Q+G0s1/6fCQyHjO/+3qEi54InQwpjTyj4R3b+8Hpluvc1VBuA5zbAD5jhlRx6PrEa93GuaK59qVP7aEzJuZEyP1vIBjznk2YGTw+LXbXHXyJMCxPnKvp2r11QtiPqfHvlfDW1hu9tlredFZ0gcitalu5rm/tntsv1pJ9sUlDPRG7Tgim2WPTDovrZq2r0LgjCkS/7CTa5/pqeP0UuHejxdrrTHZp68Q0mhHLE+XZ6MzdBrthN4tuFeXlYUaafL7NzsKF3LByeIw6l+MIjfPaAnmG2aN7Wew9htmBvFJfWYINddDB/Rtpwcw+MiqmwPKtnpOa57UsQWGY2TFuaq/HZSrLrG8oorH3ZZaZPK7ecVOZHTCMFujHXHkkbSZ3+mKdhR3jVjOGEbXg5TjG6kLfKldV5YezzHsnD1r47KHEPmve534pU08DnddoV1F6Q1vKTLjr4cGtX5Ffvbe397dUWerE5zs3nro5XzD/GjV3Ue2p/4ZvWrW8+1O1YNyt1StwvPyjNsjKMrsTk8yfaPnFkYQ7o+mBSGwgCBMOvJWrwDTSJpN8WFBy1Y/HPQrEkE0yvYyTO965ajfATQSRLJ8xR19jTa7M81lMent8DoO2Xwog7wV7onne1FST07aNLpFhwnU3l/zJ5YZA7zTIfPhAjVn6us/DnLPD69VWbAC5NUgoniB3vJ4S1hLbrEWgeV/+zaO7b8C3isLGHnEDaM9uaHQ0nAkc1XBjUEm++tbpTNlxud4ATNbiyM1DSmjHJasNT86GbIFvJzNUYfb6/ksjHSp6c8vdaKygfk6toPkmH4dt4sJ6CImmQSJQLnVPC66He8SZKVjzR/mLiucMA8ksj37/PmvKjI5qUCAQSTCKpw9+3GuVswjD6jSNP6dbP7oStdWSudoVAVp6nj+wfJGALTSMcCSyo1PPQtP/fYzpKYzTXTYK74oCg3MSuC3YyQ3i4Jnk2dl5F3nx1MrFFlSAyVyl/eYDO7k1yw5C0JmaVRMHfznfTY5LE7HBS++Wp8JjL8beC7Cs5b/yHwYXRN8VAAgaBbJe8bkjj6dUb8/jEUAcDNzpopuzj4sh5eTljibD5YG0m/C/2IJ+sFTa290uzp0VKKdHIIwfgqUyeCheKBGSPLIYLy7CiyN0VSqbG4VikfBFIoTbaqSlQMC18OQ2COUKtULe4g8EPRwUYwY5eBDYgwDnBJngeKFYwO6N/KpySz+JfagdfBOKtdRENd9fyAu3jf9K9G9L6VO9NWm8lshetkBcRHm/QHxv+QUh1TCfRY9A5hmMDIrAzNfCjlWDB2EFnShARlGzkXr7feYL+MDbR+FV8C1gecuBmuDveQn4+fHjIpwFw8b447EyPuC1FSEjY8+JutEVBdkyRD5kZbVs+puzvaVRmeL7dh/vj3cm/PhfGk6kMg0jG3UBlQAhTCyVXfdPyVEhyoxX52X4zAuEhrpyyQLepJDXxZ1isjSF9/23NZlqBCK31E76YWbhH5uKgKPHlDqqHVAlVGHqxGiQlEUmXm+O13nteJqCTf9tLEaNjAnGUlzXyFi8WUZjpjdYT5laGS3gxyXm8CxkGY8BiMFKoNtxIgpTvIoNN+eH680E4sGb4z44buYxj7NRlpRXLLnBgLOQNGKMY8xAdfVbi1XRb1gGYzNbN6hraLod5m2SyWdtNyc7XThoIEhZoZDk/l9VX5nEDUsZW6wu52h4cHk+B1o3bKVMU7/FGd93IR0O8ikATFVlnLiYwVhCyFOYds1Z+OfT2zoBnzg7aHA8cHUfMnEhMAhCahwxZgpKbvDhmqL3AmRi3ObSzCCNvbJdXf/19eoopFwSl/UsJqO25cl44Ph/EejaD7ce2f7f4db8VNevT9Js1A1CmIQMoZb3CqBLGhI4Wixinh/UNSHa4oZT9UBHng2RLVZLSY8gNbr/0cHeQG6Kuz2tpDOmRQE+Mua26ZAr2SYGpXx0E9E8dpVaB5Q/14KeC08RYqWFIj0CD5e/JZ9pO+qKaeGemZn+uOnLv/qb/vvzVgm3AMDAgITMZXFMxdZRLXn7H6o58LABuuBPjKwUejZc/nNK5xTklWpsUoPH0jAs4uqNeao9tQC1lkalVudjy4A4jQFa7GWjHNc9vCxbPPGQQ2YNi2IY4FY+YylPoS8pekl476VT/zus+0i7mHSIplRp2ggL55RVljs3WSUCy8b3CePSI1cTsPSeqCbFN1ILDVJQMbjZnbNExCTMipBFtANkQFVjcUHOZLKqMTxGZIJG5FQKKN2n8X+tOAJrbKT1YCbIKSKmzGAoz5AxD1mSpQbVe+kmOGyAVPi2LSImc6ALaK9HQllNdsVruoFKvsIUwJp6xvQZoMhxnSKaBb1HU+bhWIzf3TmLwOc1R+4COHpD0HagVbzmwr4M7iM+lb64jU6N832KbhBHl3GPGSAPpHKaIM4FkJ84iYI9z1IxbpJ/q8+xxoLcB/QxSx5eVpamTCEH/p3C4eh7T6Zuw+iSI2VaE/X5Lj4oEdZOXdvCInLyTFhkaWbt63kqIzlQ1j2Se1QHaQIAPiGOxCmYXd8Ngh5iUAtSqWayNWCJfzkHQ2PcxG907lgPy7PItvhVgkfUMZP1a6d6ilWsRG2vxRzgvGXZyjKfQT4rA9qAqap4A7YAywc2MiuyMtDfZoWZl6FDPijiPvrKshEJJTV6ZYxRWfCMApzZTGHh6a/4gI3L40He8054kyuSzYJbR1lOjadu7dy29KVwkyzFFo1C+4Cu2I+Ox6oKicVNQL7j8JBg6oKs5Usubyfl3SEC23eH8by/O8Lp0u40UcF2p7MnoTtavzu3i4xfXJ7kucfhKqmab/AsZ0GQDAUjnTzipdgtTWkndGlTlCpK3iAh05Q8abTAR9lFiyPAW6aycpFOOBwHlVsGTumE7E/S8u3OR3RGeUnX+c6sLTUafbXELU6NMqcV8DheWvY5AXqJLSdehO6BG8aPUo1U3NNKQq2FMhxqC1TjnDQxlztCtOgvzkyI7MkVXQJMvOo+NsZlXBicEKq9OC0/J/WQX7IpDIhCPfBFR8VGFGFyHhcHYrlJJ3XOWgq8uE+Y43Jur0BsQToByT1NObpJZIa73gJ5IkClwEnSAqYqagOnlHPAw2lpYzQV5kIT7QjccwogR/OIBS2OLLdaG3DHBBxNowmpOxDCcYXx1qpsW2XEO4qkmqCJI26SXqOaQpLHlWvLSxTf/UQ4KuTmk/Fh255dvb0ZRdAV12MC8PGvg2FiYePg4uHDEUgUASERMQkpmTDhIshFUlBSUYuiES2GVqw48RIk0kmabP87jUySpTCzSJUmXYZRMmXJZmVj5+Ti5pEjl1cen3wFCvkFFCkWFFKiVJlyFSpVGa1ajVp1gZlnviV2mmOFQQ9Y5meGLbDVB7b5lMOOJMtnPJZmbMKXfMV9PuehDDNzC0sraxtbOxKSUgoUKlKshKOOed8J7zmu3wUO5FZlhhluhHIjVahUpdooNUYbo9ZY44yPHqJi4hKSUtIysnLyCopKeRAVVTX1/HlNOAKJyleQkxCLwxOIpHxEFCotPxmDmUt+JZvD5fEFQpFYIpXJFUqVWqOlraOrp29gaGRsYmpmbmFpZW1ja2fv4OjkrNZodXqD0WS2WG12h9Pl9nh9o7ptEYpUnAhRCdw8KFvr6hy/gezLdqfHMalWHx3yGmlNzS4N99nvbnPfsLabl7GOYZge0Vu6AoAOBg4ZcKWH1HZ/hvqsyr3x63Ljea/bPYrDnS1d91Ocvm9h+D5K85OOKvN/7T8Ao+GWwfdQe8XFqDViY9QaoTVaGS6IW+ZhukDAxVPQE07OcJTKpygBDcoU7vlZuZyyyT1nr+qRjESPpI0eOpvRaTvLZF5vTkjP01IjoCYX7/SI1nKhum8t54nMCDBJwphUKUiyELB+b/hOiJbEg+m66kZ306EGXblE81vm8Ehnv5tJwhQWtKh8DBuZD9mR46xogIs9maaTPC0D4lInC5P1EpmY6y2QmVhm7ZF1audS9OwZVtmGQkOzTeV2YbEZe0l7m7q28yDHs9FXrnnO+n3aKUFaT6g6eZDqEpFmACOYwmTW6jsQraXrVmbmJRaJZXvdbarG04TNCKYjk7kA+O7ZTXSBI5nROKGnJ0KHWXiqcLm4O+Y2VJr0qZAGNm4XRiM3CbueGSpT7CZI407r8N7qctO7O+oaB2HYbDZonpEGvOnarFMFF3NXWlypkAYu7hbuFDCDBVIhDWzMUWEzucGm6/QNLr1RD/I+AFeLyo5A0JLywxAY2mMdRwDDfkwLYBBn2Xo8DOPTYNahXoMK4fVM+2kGoIGmNJtS7KweWIH105MAAcB5JAoaDJQdtg6WHQoaHe3ABxjYUYiJ8rAjMYc1p7A+ANF4UUPQh57vH4/ACBrMi/sAejtvB23xEXjaeIzeiAKnEw==)format("woff2")
}
@font-face {
font-family: KaTeX_Math;
font-style: italic;
font-weight: 400;
src: url(data:font/woff2;base64,d09GMgABAAAAAEA4AA4AAAAAerAAAD/dAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmAAgUwIagmcDBEICoG/XIGVegE2AiQDgzgLgV4ABCAFiHIHg30MgTIb9mNFIyq3AwUpUJ88KurlXvUeUZRP0nDF/8cEKkPWAk834KoT4EERhlesUQmhTTi6p5OuXKtq26/63Qj/jOM4DlYqZS2xr1/PqGf26IrF5zGXEWL69Z/jf+8IhBgzwFh3hMY+yR2epvPv3V0uFz+N6EWbNm0aqUnEmlq0CtQEK6U6GL9IoYiOMZgLg21MFGafYVNjZkwFomrI6pklKRCKQqEwjsJGmSVYjOaTsiEL80YnYf8dVfe/qqZ12cikU4Tv5NQy7MmwZDr6mFKXMRuwArkpHwBlUKbOYpO6u2Tapq/KVzooXHl7bk0hsNsrQulrW0EhFyexf1WVdpJhKg0ph/x0PjKluTANpKSky0rDTwUsWsOsYcY2Hege/AbcrOMQ0iG45voH0/o/oBDnnzWtf+8q7dykluN22JTYAXKYF9XW7HirspytyvETJVfnH93t4QzFA7RE2WGSWwkfP51/ram+P5vSqiXj/JJbJk6Z6C358LTDMtI8PT4/eP7f2xOIcVBml+Ot/iDciSjA4Mv2qpbu2SwNgwZgJejRGZnl36azyIBU8RiwX/5PZ/+2987KHxg6TA9cpqjTNOM70lozI+2zJO8+e+QHtnzeWWv3geR9ZAdMDwKAFQCuvR8Y2xQVcZ2iS9WmKNPVSZXpj736fy8KC2RWQOPhhAac0RRpu4FEY2Pn26gysYIi0jFtNhwYrnU3+A+n021VXluW6yksCCHHPPcZyyUujjiE8GiWQ8sIodvn0Ai/1/5+2qFdg+viMGLAEAJyY//29THcf5GXvRezZ4ACyv17AMF5PHvwQPBzHwdBO66+OfjFHRjSLzsH+p7w7Xeem8RDuB/y4f5Qw63p6FnvcKDd9wgEgR+9CwRxPlwOQ0hm0aA5HvVwLQ+HUmiernIdLnH97J+Dc9VcO9fPTXPr3DEvzMNZzD/z62/3H2rBbbv49Qy8/GXn3zK3z9GXq/6Vvv7Snrjn1Mtk2O/maRK3xF9//HMMlfoSCNCyzYFljx5f/++JjGlmxcuCqvhfq+gH413HP5hHZvrwK9f4KGv5L2MVUz4IZf1IgQ9HkPTmA7G7X55F+7S/hAVS9plwxGNccOmby7axllA7oaB0AwQkGFxFAHJ1URGGWLEVEaDfRTbOFq4lTYTgMrzRumwdJ2F+W4JiJ8w29kSvlwM8NsbgaOwuW1t2kG6unF5GISNuoHVdME0IJfyODnId8wtoBslk6YEPgtzp9mANevD4lGj6Ndh1kaP5iFjxlkjo7LfvyZrUZkxcn0jfHLLsernsRZFVI/a0W8fERcylXHA4vgMWSNtiAYQy1BUHUMJrVgIl5aDHTRnCQTHnhFKeUH0faauusUyf15/FI0LmsFs54kmvah+VIKvyAH0yKKc4rcgDRiAasQf5nHry3RF3Z6ztTGpFLOkcIKeZP3LoQlF7Jgo635twHc3JG1r74InE/R9Zydk1GUTTlg9TE2fqRa2CvjsPyojjjGitinxQwHKA4GwDvqPAnYDQcqVIeLQg+K6SP4xGAFDOSjk/QqW3sbgaX1UVha69PiEGwZIER+6enT4gGpxOnhirBrKw3UQjYJTMLbci5SGkyct2cvv0pa1KJGRe5+ldkQwS0DKK0MgZSCmuO74rWRCkTL01YvWerShDhscK+8WNigRiDqCM74cpXqbulIQJU5ooGpARidTcEI5Q6UvmRpIBqRtdsg3kBil8+OYz+tPpDUo6WW4uXW9t+Q9f14GxcYa+LIMMUe13l6JdBM2RzBpZCofLsg0SexBsCYjEonIS80TDpW3w3iCGVrpnDZ4BAVwkYreolHESuClyQ3I2TiZvNkPQaekISKhmAKrbp4xFkcHlmyflDiNK3VHihKtDOFTurAhZnC6cczIAc4cJWmZmMreX+9e1ohwZYsuKiowBUDIYVAwBNUNBw3igZRjoGB/0DAcDE2x0QIowkVj98M0LaoKPtwwPB+d3OVRu/b58waE26++7xqHgXmbbImj7a1IDLNGIHJrQ0IyGFjS0oqENDXPQ0I6GuWiYh5Y4gWbaQmE2UFnRSlG1maXXonJW7h4usDCzcOjPdwOYjC5pU+KavL+PD1NGAvDYq2aWTpW6m0b3MPN0c+QfKFftTdI+AJMi4Cn9DcUo1DspgQ1BJjTa2oTke5Du6l7KWi7STcbflRKgwYRFlVAQefgZlaI+31Qs69Eg4Lxrz3JkWOQ3UXtDyPyWWXyXtk08pRF+23z07uluKFPdPHPPZitASE7FFqBxRXS+4SyWAEUsd5LTgSaVqVdSWUGNuoWYOxcDdn+w7Om78buonTJD03RqT93H7ZKQSGa3qowDfiIS5kAfefZX0yooQy/kMfYTLwXRgAofd0Mda1EwskOScVwz0Qg5/tqKhAz1QQNmSpQUXoWcfHleRPKwDdE0FhYSoc7HaV/ALVqxShAJbp6XVFWatYZDqyMKQe5Yk28q5VwNQMRky83rV8j4Go1YU1orkPPRbgEWtbd79wPGzuXImndKpnziz9UeRQmcnQrfc4ZGPpvp1AdBLSUnN6ygn5qZejRaZ5dulJJX9L/xzEzfeQBhbLevOghWZL/dIbAyJ86aSvsQU1mPDDHWdFkdjpyq1EvyVyPFk50A2u8saFDLWpB8BFk4Ea7n/p7Y/xaTWiZm9GH2xY2sGVs181bJQnQjVFFKI2M1Ps9bmTucSonAOo999YcD9DZ3T7OHlQxfnfhiPTIESgFLodEAll9A43VB8pGgxjiZm2RhE6Z1wMZCphkDBI09JhiA5BFAMMVUpYE4YRlSkD0CCLYwzbZiF4KK1mHbDID2I1UBcjNRPJgBJrCYyMIklpIDY5gp1IJ6BKDGonQgxphBCswjAC0WbZPD0IyDJ+jaFvAsaF+R0oEiBaEFiCxsj5EJ8qgTU0A6WCkyKku9aJB183MfQCgKmCkLgGo9ITbWlthY6laJA3bOAfoCYChAjtuh4WSFsxUuVrg6CrYCYC9AHvrQ8bTGyxpva3wcBW8B8Csg+WMgf97edxBi+wM6Nl68WGNVXUm8I3IyXX5mT6hiIQAsZPQRKxz2HrTGIRD3DoKsL5B2CTwM/umYYhh49uGlRBBh0Y5qbcg7h62l89J1CTAaU0OKAhaQt0MQBy0l1X9WAjrEnOX/LRvobkJ9QShbwYsWU8V2iilmg4IKlo651CtGBm4MF+3IrGlVqoKqYq14TJHu62jc+L9uX5HCoS4P0g4y7mXqxGXiiqHSiQRDp5XldE1TOO3vG+xvqWNxpa4gnJPnGIkuWiQTziwr15ptNaVkoMWvkUkK0jlh9yhDBziyQkfmx8rJxq5kivFKiGJTOeUtKxHxRGiLCPFwZ/nEUBcB0Tw5furCj0Qe0f1AEAIILnYm1D9dPL2C8aMUtnlDUvMlzDlnb8QFOSI/q4k8BKfFpJAYsbTcH4eWlbI7x4Jz574/E4YzOQZ60X6wpS3zN7DINcMMG99aBOHJEFLdF/cRnygOPAHnshcctgYuhR18ns+oY5Jc2SglSPbakRnBRGaQQzyTnG+K3F2KzHhGPXsXJCfS4dzllTOSG25rCUTpEfKTgyhbzieaPRqBahYtWAKj4RsjJG31MzbnS8CsSMn0kB1ygyhsuf5LWnqr+FzYqlfUr8oVcqq2R+ThMEukPkKrQ3Zacg7R3A4U0o8V9cs5l0HjYLFrkSZXfdf5zPgZdecsTfngQPvNw5Gh5MIHRvGJgy+RuJ52KRCJpkTh08aJXF2Q3NGgtPmEOtE/jSjqWcQIZEvaOGjbHfc/y9NMyxCwkKhM4KLG6ipWlowMKgIGGepNDmY4n63VDcdSNC+pXyWQ/nIaWT3rkaIa1HDnW/SsQSHWuv8eM0i9SIsfLZfG71QEoOiw84AB0bRI1VUMJ/7FG0OPkFH1KgWL+WWXTuLLtICeufOQfORiJiWK5xrwSyVD6kSJ1K9R+WKHwuPeaZsG+T8h2f3ax1POqTlnkCPAiXNxwfrmhAFoY2NZPZd5Zn0VSG+VLRDvKGez6BI30RJCCUk3vOo9iv3N9YhTLAKpyyftZ5sqIGDtF0/h3gfkl6hI069JAgNpM7FvGsb7yc2UIGJYSw+vOkwY85sJG07ooUiKLKfuvm3Ux5vo3Fmt5Q6Rn15DlDHqNjW/3svdVpP4Gq3UOiOK5u0UXWdmpm8+JqlCPgJH7uWaMIfmXd+Xs99Glm1sg9VojCppZU4jV1J7bza94vKwaGOPytccxbJ4BNxrIeahwupqZqCB1Wr3YnOjVH6ZcxB9/GvyPS8hpKfGnBevcaBZBKGixd4XKH00vFkev5Cu9O7o9pSePRf7ol8NuLRpmTaHeU9s2p5erPNz6fZ9jdbeB9SX0sOScIDguLrKyZsGaZDCuNq2FPZuXdNKEfqvS5Iy0AwsccUiOTbVVUOOYvIdFrA4R/6lPYzhJiIGncQiQMIbutgS2bEc5enQZnM3wMYQ6fb98mLSmS2EtQtuRPe3x+oUotsvlAVyhwnWu6Ii+zl27EKQg5wwEPaLR69L2Uo/bl16HuYXSI++GJ23CUmyzia6QVe7RV2Kfw7DIu82fly53ArQ4MPhwH664nfsX0IiUaqPBIU6gnKDfhwZZxR7+uZnm8XSinObZtuZTtuOHPC8cNDpVPFDC21ksuAM9+a/O5s3lG03dUJqHVrBq6PsXndhWv6Vaw4iD9/hP+te7wOWemwJD6KlIaOl0L4Sh16vcr4DrprPod3oHxTBBByEKFDCxzff3drMKL+rv/JuVYf/GLwA6ripTtWyAZvmxJh7dPWeDV73DTJ2TrttKMZ2Eug2TP6EZJt+aa9feicrXbAZhznQx6UX2G1UP2E+IP4Ylv3lr83kyRMNipMJ9RtGmeByvTTx68XKDirfdFo25rhuEniyFMsqXS1/xiJMf19FH5DTGM6ONb6yksPEjwC7Lm+dp35m04t7hgNaxkQ3D7AbpcgYJZH0QX0DuG+J/5pBjMO63fUrJOnPoChyE68Gj+By5Skp5EFFCA6huao2mYZAvhWImkUwpj8PR0QH6RKFsVo87oOer894GqwDQCynDPIHEpbp4HKEF+kQuQsaB0z6thvPc2eLlExREsBfHCvd1RKZEr611/fD7vt/1ckGz2dAb4oFWSlNv7Vmp7FYJiStFWXKYaOXhnfiuQxyhH0VubwSr1S8jvFUHBJfb8WziN1BDnvfFqL0TJ6aUea2vf35p59V+AW1Uc+zjA6URxpoIGJbmpwcHycTHYA/wEDF5jvSn4M4uJS9YM5HhGl737UEwaPZDVVmxSlheIMzshhJgV6U/8s5T2OcBzqJegbrmnXvnk28GciJvv6rMtmN7+NFL+t9hwvO2Y8Iw87P1TvHLZGCskMizsNpHG/AWvkjV6/eajD5Gj9irvisPwIKoAQAP9q8I431zBJjeGq/7d4xp3LOX02METGyaAeCxBPm0J09CA0uFo/kE4BATXWJLJbhPdXEphVhLn2z8BHexWbcNlxdx/GskMpfpEXBsYGABhR8B5JHLl5LfLCiM7SSuc6bsQeg1/tNR3UsSfNLvwqLMlLtFQ8Nf17pq6+OYAm22RH4nzHb1GnOVnn6iGuiWaKvTLFpUBjPGy0HFwN22HR3fWiEiI7pv089qKhXP8aXqbvlNdGtg+Bo6ghpiXNzt3TRvCja5TK/DhY3QxRdIDZRviwQETeQ0buk8GCg7WDNgn+sxMSgn5h5/DOHVhehVFo66slZcTTJCZMnh18r/kDGk0HUYH5Xj9xcsOHD38455apRyHrqOJYRxCrBLbbav3BIgZ+pQivG6a66fKe0sScl/KLXL69JyjBrgxvUdh2nMxs31HHaGADq2PxRQjoJ7NIQZYyoOS8GJiFsWtL9E/CXw+RulBKFAulh6tXcUjlq0R3Sb06zvyDXHNEdbL0ZBzoUQfuabfD0ZMg+twXcApJeKdQ5bDoQ1Ivh5vza4QuRNrvkACPJp6z5gD5FbE+DUjGWWtUsiJsKS3OBOIgepH4sL1PWlhMgb/oVEPNqGup4PGdddB4SpiSyNeODCowZk7IkhTBv9KmfOBRJLyapKJTMQ0HxIZIhVDxRLVyoUMLhNBY/Tx61mMv1F+0sT2UgzUXLoW6NSVBEPMgoXY5qpcKL34v9smV+DfKocS2GRJga9xzGd/mstAlOWAR9Rqu6I3fw8kZWEGsttUdyJdQMGCh4WyW7LvusnH9viF+l98dFjyVSZRdewDCWOXdWdgsJxyeYbgWHFpa2MOjrcxmnNlK+ncC0rglotHdx6qKczqL+igPRW8PaXim+o+r0/cigS5QyK7Xfip1nhEkGIapDH8+1zbjsu55GFsd/X5m327neqHU/cQWo/eXfihm1nVHbBw6lzvi2vQmV7fLE1SZionoXNHAPd9nR7DBiJjT7Qpo+GK7be/A0TD6kftYwVgaB46Df+Rdfy0LCFxSETdGq2hcFhovbM6ZP2cEHTeeanI5pnKe0plvCXZ/6syscT8e4ScLRCClVkivOMSBvudXKDi0KSYmkCqXSZR0g/VeptQx7MaBiyAY9/Zi07LXLZ5W8BCe9aq5cpbIU5r4tR08LdHyaPg0KDE9n5QJ3shWvU9FhFcjgKHPwwKQpMf2ANgOb1yeUiSURqW3Ea9LXzxuP7C/qSV0RjrC/H0uzgjIoUTuMLm/LVbV8SSdgnl1mpdhID0mk3j0SN+t0sPG7GA7pClzSWvxI1az7EIkQKqcDAGrUBrWdZ6rr921ql+5RJ3lX4gfz7680jvWeymW99oEDrN3YMEIliDFCZQR+NfxU04NRorTISZuZJhZ7jncaYTzb8sj2MJjMNOohYrlQv4a4NGeqi0k27wal1OkjUypcCHSIXeORrS6uB9q64xRrKVdmNx7GI4IlmpYIxek+J0JX0OwP9Z8u2v6QhFCujFsSWYOkM9BUlidPpI47ddZ2nXQXndDHcMQUant+qoF6v0tLQvWXyiQkUWqP6HsGjEZ1/auP+EpJyA7K/3NtKV4xnh2tJCAtiSRHOPG1+y/AXv7TQ36tXs1++zs6dtJi08++WLwoYXZNUy+bI6PygqOBmK+pUpKIHBfTLy3GisZ2kvLblpmJy3GjgZqqTXUWe/N7cQqx7tXGWyEDkFmpLWp/qH1hww+eo+t6U36OiFcYX/KaQYp1GvuphkGIO9lIEJl3CfmCb+jTimVMW0P9zGGzi3bj5eUgqP2bnL9eLZdjIXBXl2mz20VNlkcbOa57TTyOl4z2Rc4DeEA7WsC+ryPUVhjfP9x+Z35DVhY4N59K0xbfgACcZ27f1881SaHphfyx2Bo7shJL4m9kc7S19q05dzT15qjnca2YuqbKQ4GaDfY7+e6NRQfCHhHt3t6j5RNQgGYNFumyV8zVhjJHt4iQ4BbRY7ZT0jUcBaSkBHTkQnCQORkVBiZ89qs+wyjT11hW1e5etEu5HVce/zTedbKFScN64AR0dtt+1BKZ4cfIU9VReM84+7/5Uekxsd//WEEOd3bHqsfziuXgh57TnnYYnJHqhZixpQhVDoJDIczsQbdM3MkLve4uTxicuau01UhwPb0oE0FiR6b78bosdGaVBINmMocliuS212/ZPtdUt86oZaxMi1mh2bUVOtWOOQZnyCOTDJ/jNEuXtM3rkE5JxTmti6LLcJ8mTbuPld8h/T2cv6GV3LhLjuPv8VPHr3xLJAeN2mns2RNmeBwrx3d5M6A76g+BSi9dmr6yNnSfGYTWxsKieC6qj6TpkqqRvh1xZtRvOI73yIBpqcPwh0ZHNezuqHl9THMjnpu2MeOBjIvOJWZ/vFFj84rPtV++9iAqiALOq6OgEd3IJe068Kt47lIxLQ5ba/FJt9ol/Svy5DN8Q30HY04dr99fz18sPSCamYoQ7Y7ACasuCMfZlHOnWqJhqZzQKwBh3/FivCuB3B6SGFu3U2eyQI4cCWgOuHBTKViRsbPt2Fk+QgsWVrWcxPMd7swqw8Ck5xwWvQV5l4sNrYsd0UwtosXz1Ruj0GFeMkjjQlingnDh7TO0rXOB5em57vLBG607ghPWPtqjpozTfIs9D+QEPvoglZEN4ugJjAeVYTQ6tIqlflZ/p2/rCpSyZDIxJYOSIpxEQl401WEiXRr8JPpvlBx89uFmhRPPwIxDWaRy+GIg0HLoPd1+zKZ7buNRWihPNxzMkZhd1fEd3uKcWWnQm1sty0tMDTelfLJpjYg8h3aFFVoGk/9ze5ZEDNAtLoYRQ3LYzGg52FpiDzKzQyi9xJEg1tF0EQU0F1Ze1J2p9cgUCwvksHfnS3ZGXZLm5lQDrujNk99Z574mirrBnMZbnbzIZ6DnkNyUqUtT2xKRIVHhW4tmyPqHMTzuRi71POsYMQp5pFt9VMKxZ43G7ASF6eDcQfYkIA1uQWA0jGoQeiYcx6Fb2fL53icgDCSXNXCaDg2SLdEZNorld6YYpEl/rPWinPvX0jGRfl1mjdYadX+pVtlF+/17xoUqa4UU5EintoLOkN9pvQueF7v/7YOQ0pmWbTOdxdCxRdWpZfOBjDOFqQ6Fvr5xtcXIoRi0aewGQRI14MdKTyiTKGLPRLvDLBROBc4R1Eo7aT9ZN5p2OSzVW7sVBNLECnNXrxXWsy42jSiCzdCCc1FecLG0xKt7sW3UvXvC5wOYbzozSkmXWswbpROrpgzlSi01y2qZga/r2qbu5SWbTpOa0uwI0jtbdCqg5hLLN/NzGD6aUfodfup0k5zyz/npLYBbZnEIMmQ9BAuFytbWGfV2ub/dbScUDcZxIR0A7XvU5nDMuzzHhRQkP+B6Oy3YyUhGMpAqR9S/jg+X8AbtjCtQLSqPYi6ZMAn6DU1oRCcIyOasOWZiot+wrXz3Ye09pJMSjKegAnK9M8cTzg+yOon1zBTpPyWlDOTt/AJKz69f+Z9jWjncxTFbYYFV8bPDvojfzF4ajkKzVaQ5Wjf8qrXMm3ybWhDzGX4xavs+UmZz/RF5mRJjUzws9mNGKYdi5DdBhIanybo5et8mFsxoza5e+JrVEuZJ8OVMqBxBd9ElTFNR3oTa4KkF0gcy1W2mIOBVcgFahXwi+Ya6Zklos1E6qnm91X4LjboxpD8QdiZzgd+9dJreMSVK3fKR4dKMG6DKXhoEFCE25whbPy5nuKXSorUsslvls7lE+FQa+raPhu3uLMbydP8C+jpra6KHQdFcF5zv8T6356gHsr021rduaNXwzNQ3r7wa4lsdR4fnDOgeWC/aONYkqHMF5IE5m8F4/+gjWocYz+7zUsoBeNXlKG/yxHGyJIn6lJMkUSKiu0G8C9CiEoKcVPrQ1VZwzdUjdUA9iJU0VoxWxTNjVe/xKJZ1VRkHO65K2Y8Rq0eq4eFxIBi9tDYrEftt6vUkyB7bfh6BAEnISPi2sb++aSh0NZX4i98n/aN6esF+CBvCVLCS3cP4kBv3X1aoW+fvL//xujeTubasiEyiPozDLv/AUufpa6/QTN2uUlx0/auSORZC5XmwLO1502cF30X0+wmim5i0sd0KVq44uyQTEv3ITFY2Jqw6GXb8UFaHSrqFvm6XnwTmzesGjzMkTR+J9ER6dj/vNdJ09upWr9Fk9Lb6g0B5PW2lPGZuULQ30gtE2YGvXO5gZXr5Ffi1DsUpPz9mDyY8p5Y3OisvFB00J2yBYRnJ0rfpoGZRCebvCWrqGl54PWQSSxo6NhT+DrItmxQuW3tJ5K9M1S939VVUlX8fKuS16I6rlR9gu/oGtji8M6VFyVUaA6UIPkrfHf9ZSX/cSWYemF9Wf0MwP1P2P3yp+ohScVaueP/QJz5EUKElN9934RZk9EWfLJMRPu/pj7bcvytuzH0k9H5dCI//KvbbUOOzwMvz8cSDqDTYe/ASr9EYWRzrsXhSgh3mmIU+kJN3AFUil6f3vViV/BaG7KkroMDqw0UeEgt9Hx7qj4d7wm/xKMfkxgceemvWSGI5YsJ3cXm6uWlZ8kOF3Hcp5tj01fVnvPc/66z3OLjZmVD+6gMu8ZiGUlzuczkWVaUirpyPHos537JOTPB6Fv4Oy8qzTcIpl+Icq3j/jBCbvzcv6PCNzvHb8oINxMvfvK1prVr0bcs9GSt4SfgSXC9onRMubvUOx67/a2N5VVNFser9s0/UmHMfmRX5ojmivD/vKMq568JgH3k7/jdZB+ioG8+ihVWURxqG/8suaaFiGyiyDWgCmgAVr2JtSL4zIqJSQLXkhPjvv2uZ5LWiyy+oKtFSvupVWsizF7T+hzD20J1/OZvbrxiEhnDDakC53GOYsFuMKvcylNPvhtYjL4cEA5NeM9fa7Yvv8+OJutKYv6ahbgTvPnPS2OcHcHOCE2Ia+JWYeat5OGQq/H9PBmKOSCQvFVM1fyeTRzfHPN5wsTz/q6JE4xQEm3YSYTKMjoWg9m4f1j8g3HY+HVsSKn5raUHVspJuyQY+297em8a7Jbbjt3UtJ31VQQmLwwpF2+6d7YzdPLR9gupcZpmJj+WHNo40q25wWxKPbCGf2g6Q2YULmJSP+3lyJiUjQrCBxvSelZbJBhcE3MRzt0JjRU3k4vU9nqc0Y22d/UNzzMsnoJXtKKAKa/sZh7rydbvjjdkwBis5PacEx6P0zlIE7fYn9yyR+nzegq6ca/BHTgg78fyzMWwmA7l6bXDV93C3SuCf+7ljN4zDtK8b4yXckAXiNnKbjCa1KRUaoXWlikRRpuY/GO0OQkuefUHma7Z2XJ5WGNP84X9DRs1bUQixBmuC3oAw23JQPjp+wpBFC9ypvEGUp3oDyCnxAPYw0LZBjNiygYqmUFEYFfCqdLFXYqtbmiHXOAtx6w1zpUcSvAv+12EFwnB+jCfu5yE1F+khkIy8eimj38wGSg3rDGvEyWNRVR6NAVlyPeZnpw7tvzT+HMrUnhH7cqeeJhdItrzc2bEGw0raC5AcxRIeftNL1izCVWXJVf3qKCST4ogGVsIW1xgmyKmGvGdNofSmj+uAxyNdasW0+VmPrgAhW9+lzEC0hKWcvgCPd57vm3RbLBXfQvDevTBS8ZkENie7xXMynkXItlmkVBb4UoCQblp0lH98mqQs2/IRPjr+siECc1VZmb9HlYEYEgcqpLin1OLnIWDvXm6zcZ6Hcb0/vofkWawFNew+oOr4cyHycgFSkHgJq/4cQP5H8g4/3h5WwDS4vJrJyKucXqM0CuKlvvXCheZS4owBfrrFHFUZtxu34d37jnN7RUT4sSfHxItVGXlNIvSOaBohQoQW6xolE+QvZmY+tTasaW2ubqhymzeYCup1/P2rkMGr3bZY4GLl1LuYtgqE/J7wqZA4zx5s4NUmlmpKVIMVBu/7Atl6QgQPA4uUiANlifv8OF85aCHi6FkiTZDEC9dA8/PW9t/jR8Kk8W0fa2WaROOl05QwixY6vCahR8WfoINFSUG+SN4ZsNTaYGJ5SES2ACOXgghJ1tJ9tOJwIw64OHGqTuoSy67vRtBrDa8O2ULQQ30vVV6Q+cz7Nm5ECaL+q+yUq+F/faUBsaQNta8qWJdrJYz/AVLFYCJpCGhi0JgxyYeHActEEaR4g1iMIgDs26PaxyCqdLqvec6MRPNgMGH3FaXKFyWgorTdd/99UBBKdncbPRgvgxQbI+XTss2B8P2iPQ04QwKSVSkd1YYVoHXbyB3Pli3obZaIO7lZw0sEhBlFda3bhR0ATAgiZDiciyB5IIMLgrA3Nq8h/LqjKOJWIdHV2M1YX/zWihS/VvSKVP0LK6fyYQVKkySKSGOwRh0AEqlAOcgwEZjZ3yinpcaL7X+tegHfia5ITg3JR9ipp0jbnh7J5O4VW1pmypIJz3BwdGkkWF+31iwgF3rGn/p7RWfeWw2hntOvkOzP7yzr+eWd2oc7YmV93BWK6lumGkuOapfg0MkYrtXkqSegE+ebau7jMSrFw55QcBnZ3QN16aZ0q6XJZobT8AYqbPdt6Y5BpEvulxdr2mmch+BkGhoLCIrvJMMH8V3NIhMf/eQd26i5QjNCl84jm2/5cszL5wEGgzc/YbB9sHsxX6DEBu0zYdM2lbPCa7R80nyyoWjJY9JpgXEy6F5e5FK2O6Zfkq4X6oczEzy8IFKLLTgfEFB7tDztlNok1Pe8E4G4+y7o5QPi81G30CtvW1NyBOsPWGPiYLPB/J5S6l7yc2NWzIipqXcvWcUOX9jNF4kNilnVl4Tnts/dx8OG9dxGmA8SJO4uZZaaXPThiAjDQXGteA8NjkdhPwqDcCN0uU9Y+Bsb1xtwOz8UqvOX9rfXGL7ZYtxkAp+sfDRbfqz6ko2ao/K+wSuffDLNl+BI+RcsJQnB+pga8bXU1gtf/jreuE+h8JUkNpqMjxfFizxlo2sdUaGLLxq+7t6smF/2aVbCCDCEx2HXadYC83qjDNzvGNqqADQBgcA+0zYieGeYwng6QzB8e/s9hs6BVhEiycKYrp0NfZkafG0TQCAYYKY3IcRNSrBuogjim+dViie+Hzr6g3NDGNqej/JPvHrcdIKBC2AMZiCSQ7ErtpeeKUutHVHGezYLcxtTVocIYlroVT0n/0jhUzW6tmu29iSXdwrreKSCVHrOuJ7D+evhvzpA8bmS87QOK7iTjAMqTPKzaCGsgGleAkv9Q26FrN6VmVSAoIxuxBKbpjsKRGTb6BPtq50KCOEmLDaJP5sLl/8ExSaSwb3f0XU8xbNkqZqwovE7qThEBox8UzqYHxbU6q+6x737X6KFkhWZuM/5RzMjj3we31gDtTO0HHHMQMpfzitjHI14X4XwiEjic8HX6hbHLZ8xfO517Cq6aSuT25t2aeVUftDNHSGrdU2AIPloB8Qq3VebELHhWTFF7XojeE1BcO7jSoTolkuFiArmI7Q7gaEQ3QwxTUmBKR2sTv+QhaFDr34JLWND2xLa/YtPSrbK0xAjTGHKQUaWfpfIX25Ixz8+fF5ETvFWCaY9VVlxqrf1Pty6nBMNMH+BoIze7JKWLlBzrf8m70HOjIv6LRJZPWTQJ2u7GGoyR4gSPrz4a/DoOTAtpJ8De4BYyM/Nz2C2MlGI3MAfuJppyJeEPMqZuXu+zqIaVA7aJ5JfLJg5zgYXuAOE+KfqS0zCSBVFmYTXp4VM3p+uXrRmdO3IDgHxEymENc6ISBqGld690A3Y5V4R6Ch6ZmHDobkDqiH1KLZExYrQJC9gvPAd6XHCGA2TGfIGYW07NFYvyCYVdTDLIABYCDLXsHSWvxNYCeMXX4QQuFWWAqb2JdBYDM8ENbGVO2dGBNjxrZK4jcrTzt0WpOvTLgJHaRx1sOmLg8bauQYAGUnyn68SdODWd0MEb2Vo4uerfZ6xf/WS2rjD8o1ex39oeyntOYuLb+nItVcF/9Y2iTKIDG+7E+wSArEADzMAyWoOHVUfraxO+8auvm+R7upG0ypdJ3Cf9pzWYQwfZU2ZQLXR9OdAohqeAxXvkWYzMO1QLVG5pi8qjYbN+gARIaP4nb2GFh2docna3yYQ9NY8U+mZQ4aoLHBYG/t4FSn7cbGkMrQVQRces1QceHOJJEkuzW21FDgLtfENw3X8hMT8zjS23Lggx/n7mlRCzxdrcbCjur6eCjOlL4RhpOgVVJy+6TibRbgAr59tKn6oK9Tyjb64PHrJRvMe/Iywob2v2TbBNG5Y3imAZEjezbsRKSVnIq2sOANZAdBcbyg8kDcWy9jdLZLRsqXpGnNQfOk9CGCMR2++wrECn7zhFlghOFIV0ByAkMJCY5+/BmJeynEBmOzKZZbsH3O4+UZdqSY/z8ptYsW6+UvJfrEfLi0gMVE/c95ZJp+1PLnFeGC+Ofa7UV/2z/0Vq4tQk5TGMwjf6LZ1jq6d1vaT1Y8elfjjHeHaFwq6snmv53qaSeoNraRWLFv1nMU6FYmvro/J1KXJXbPf/KaA58Chrx5Q9hBBrrmmvCg8a96OXyPI0VuJq5wz4qBTUemmVgUknuQy42bD+vpTBvEK5b764HHi+fESqDMh8OAt0VJ/cZHCuaHgUkIumRVpxa/kpSWMtOxRV+QHO/ZQqyKrorZQ8mklNS08qSRhZcsP3wIGInkoJp1uUmXJmw326hyJD+TP5M+EhSpSessDyrQjqCXTPnsk7bJJbSQLOn6Cm3F7Wt2iJvsJTYmGmhC8oFOL7r89VwCXgiSPL51epIv+qraAl3hxhArwSML1vOf/OX81BL6dV+b8aNROqugB2vKTT2Da+iriPVX8joSPL+RUgxX07UHvTRofW3eJRZ9jtGgN9Dylonp7HhObXnYOvpf469effljPSu7C7RrqwgLdpKCkZNqn7rhuvdI56BRkcUnnyWqhBH7ibmVfTsM+mXiFWBhzWPYkwzqMQWAUrhNQbEFYkCoQo/8DMIt6jAnXHE+IKEvmu4xxu4SIGBft9etgMaJ70/2D+yk2m995YRD+bys1vkf2YkuF0hp1g4vvFFtUwgPjis5o5iOLSF4rn5rW1e64UQCDO19M9NBJeLYe+ZpLEa5BgRmUJqVaFLQqVbbb1hjo1xwTjx/7dA9LXeml3Dy3oe6UXrnaLjJu/B8RuhP+GwZrslPv0KJUjlJhuflQGrCkNIugPt3k+6sElVe/CHzYaAHBwfzJYFWTJlf0nIJ6aCaY/mEpN/Z1tD1a+bUlutC2I9ss8PEIdaG0ffeueInjYxvFxhTmbFaS4Kl6UrV/8pl6OoZr2SyCP597aFpX33zwhb8wq/RSvkKb0t/TuzerLn4rBOXeBWDYyPl4Y5gQVUWQQkeLkIgBKmJcSgyMIeLWiZd1qCBXJZ4KsszjDvVoSgUb6mjL4RbRJNVIRk1wJ43znuLHU1E7QBTemmZb6AQE+hyzwJtouXmhTyEWEtvdCE7wURXd8pjkIzEPieiDzdNc7R2rRTZxSb39DsnZkOhhiaHYnwnG+raFy9PR85R73SIpmyv78Lq92tXG7bFT2OR19ABFFv7+LOAIyPLFucKG81+ynGx+iy/U/UzvpvSO4rIdr6Z66CAj1b6iItyE8YPVACmaLMjpNFPfHVx4+41Pf2ARE+oa2LL0iRWMoQ7bHMzT8H1Ke+S6CTYlZnC4/F6Xb0N9nsWyU0FTpu2mHRDs9WYRZzXEnHcUU81MwvqY6XihREzFXLfnqmCPN4sWOgaXmvdY9vNR7JggsCWT1RUVBwp3YC7tqG2oQyGNC3iK0EUZWhQxHbqi0JqntzJ6+/IJvsw2zeXR3nrafJlu+uFpKS11SuurUVGetvenW79SUAOhnHST46uwax9VX8WZ6Waq4WTNXJcv7qulDLutvReThIrmbzCquvc55zYrmuQ3m3M0FtLO/7RgrUXjO+XRNL9lv2wNld97WiYvxo4fltZIJRWfEWqlZ59GEc2dXboKFXqq/6HlQQXsgq+szbfuLXSvScoSkoKg/t1FZy3BRG2tRtlqG3bsmbxmvSV+bZLM/c/C6B2TLol9kcUhjim0KNBMGtaWnMLK2Syv4g5nJCJ8mW++6dRxc50r12ky5OroScpJgFsupyXJLjLHe07rlCkfU+QFI4/mpiQ0DlSSxk+LIjVnzq0nK2b2KPTlWkeelSNSbsAhnz0gtVx9g2Zly5vL4bhYeZWiwB86owxIsbOHpTXqnq29P0RSX7QXNtx7jdpkCijyt8+SVvmvBE6u7wg2K67HgMcTL/D6C69OGyETPmAwr8ulAPapfcXq576q2BL5GVj25xyynsI+fegoT3bVqfe/kwv8/LtHEU4kyWK7a488293SHHnxsfNyez5t/3xnWVrMCIHik6ZEPCEin9gc2j8hzXdESUmW1/FvxXX9nQ3hu57iibc9SuvGm970sTjP/vxDWApiuiCLuQUiZCxcMMdYVJvoVBzui7eRZXhQXOH64rab2iMrMfPb82EseSyiIkX4ppnB3D4cZJcv88IIeCToMo3xMdLtR8AtD61rgKqgyovwGgD/gU+xVVTwcTY2EhLAx/HjcJS/cTgvU9gtmRBwqVDfN6sUyvVvj7XmBKqGZQvk+tthdS7YuLGgxmjS6FX5hI8IFpxihH8kLSOCQRLFzfwgDQJF9RGIzwJahb6LVFsvGGTJLET76TBiAROcJkaHPfrSbBpiCKYLQJZ/JP2xApvVG8DFk4zG1Z/Ih+J2RrD3r4IH75hFAYQINFsQOSUexOSDKMK/77mvs1s+gAtAFueL+3lwzmZ8x1Rlis4ySaNJImEiCHjAoSsjoRYR8XdFfx3MkhJTsDXozRit7EO8QRTRHUBKCPEgBhQipJtETEaT6fKh/nELWH70xrTk7LHkH2CBycgIjwK9ynrpFEyldRQHx//GBusxNWtUG5Kv3XzOzasR/rv4sI+fF1bgTQ+29z+zHdpQJ7mxYQCwnn8ui+blmNpLQceDyU6ssszakWwRIqwIZD+DaQ30mT2Ih8qFJHp1nEE0fo9RqzUV89VvgSKZeALLl+MJE4+5uqJrsfe2J2esNEJb59fWrkxzIjO9Fz+YGo0QrAAWodonDWVnIkHrvrhJiC0xi3W1bghSiFIY24asZ0PsqqF16+QdiiVUs244t/j24RrbF9fmbhJhfSsl7UqJ6LusEbRWR/eqUYvasEEV4rFHm/HZjE//3aaNmTThO9E3hyJMs3g/GlZp+1vBtSd/PPb3qF3SpBEINRuXtK5x/w6YttGjoN4FADXVRFvbAt6y15474tXOFj66t1N0TNjsOiv86Ini14te52Mf95rtItsMMjWxvaKNdf+5vLuKXgX3fzewTT04ulrboPblceKYIzeMKetGv1R0zlzaxuYIEZLNIpidvxvkWeQ2xZU517dQha9CwdysPc+1pVqkuvxeO5xZcw3W6jGLUFCv0vk51hVw8BjkBDh/XOiGxaUZfUJbP4vruLod5a2Lf66T31g2FM7b5ky6YqWZvoZWX91D+QjHiDlgvCl2eL6cMyqMaczSbG7ijO3tGX7NbftYZ0NOYK+nqynQ3BCsD3uWhKl9IrsTC/GTFrY4WsckYpj+YeQ8GmiJyXyLeDpXnaqzOiRh+aBWuyLWfQ8fTnxnxF4eb5CnxIwA67zlWjU/JI/aAqm63PpoCwfKwiu56t8vjfaf8npxAUzyBMuO+KXysDe2ScaE/styIgsj185Wq9N/713y3DR8Hq1tile5SxddPFOVGNq5s1u6V9NuDRXX/sNSJWO2ykxE2q1UUugrNewn1a0rVKlmPw9HibIKn6djYBc6hFWYrnE0G/i2d3Hl4SwC2MS1RQcTWn6IjCqHylIooRXydjp2poCAzeg/DFV6XYmiP5UwKWVw1Mf6etqvEGsSf1Vn2dZ3VSiIr7Qs8QxEIEKKPX05fZgVuV/zi4pcuP7TS0T5vTMOQ7S0Ny9ti197VsPPI1POeqCNUf0d8XXPInM2S2MGFeV+XrdKBg2w9ytSOYW/52tCh6zDxaZTv9GXdRpMa+kgfteCbFIiOFnhyUKIgYYWkhu+81DcwNUieR2+RHvgr/K6+XGRVfSyjF/a2eXxpc64PY6/j286MDNsMNXt6yqckIU/WIHlbJCRqYcFJMmDYyxPh0AwQXQTyTE+ndx/TqTbQowZBh6bn+zfw9YrixbXGTetzf3pBweh/n7Pf6soTWs3g5/Geal1X6tf3sGY/YGbfCy+pGCt5w35oq2P1Tk2JTB6x8DlmWn0sGgmX7Oe4qSEmD/zGWfu2jVPgZd4mXdHBzUG8abS1cZIx8ix7xT8/HPRNa79lv+vWlcVuHRusNiYpzdN1IggVzcUEsckscI3fM9g+jXVodm7KLvD5wwJn3hE5pZiG3JvtPQelhNxIVYJb78mB8nwcEkSZyZ+HO21YpWLLieJq4ytebfvY+rmsJQ34ounykhe1xFwGwEMHXidf9OLJy0FdlWJht5MoYr95xoGRk/yYPcGCRPMVQcXM/IbZcS/C1TUkZbQuIZpCt1pcRY7BS04+eR9/fwfCEi+RD1gO4Xdcr2ET7fD68DZKnDx8emDoZ1zi/+DK0NfirAq/Bhl4aRrIjsWQv6gH/SxFVUG/kHsV2HR5rueZZKXTP9LSV1i4b4oA4U4M1f9s16tTAZJ9iU2Yt5l3ll2Si+tYY7WUBIM1qGHsljd4Smx+LCCRwufQAiul+uzXfe4btmLNolPigdzNn7y8gHzZiHyE0hjcN5hx72aCJ1UNlPgNmGi6ZgulyKMsCIExW6kwjdb+CV0rUPf8k+qbLHLsL9kFhpRkT3zT4igE9V65xVPh2za+BZKqjixkXuqgdvkcsBQviGroWiGnzL3eTbVqRkl+XAU8uslDoUEnT/4/D3zJuAdILPF1e2DYeUDjhnqb8LDFvIsK7ut0xG0iLCQoicI9yKgZpnDDz3/k0Exx4hEp+PXGMenOftnXetU0ZSYsKE3hIb9gp53rneVsIa/krU+ThQtbNdHe7DyN406Yf9l1t/6wtk2CXwEld9XX5v1t8/e3iovkorMrR3qlcru2el/O3+J64zmcEXjB4peIjj+MGfzppgo/mGEbKHkOmJrI3GDKIRIVfmy+KVDCUlQ6YI6pKIPxN23/maMjbccQIRF95BXZNyPDRvthfYekv1Ogp/mY+Ot2EPCcLo9VLxwRTbtnX0F2r6tkjJ8laysqmMLxzKZ6Zis/1ou0Vq5bZjpmlDmXZ9Tcm4b23YYf0RsNArdN9ykbu3LAKfbN5SNpkTim3M2eHyuvFeTN17vL5JLcp9OPgBD+hsMtzFNN2BvPqq6irNS8a/j1evadDxKeplsFSJRONaau8gxJWXae5Mx91/7/e9c58z/3sFGr69fysQuoRzvvltaIpAXYb8+UlbZWEMbiP76xrpoG/0cp4YNt3LHmJchqaTkDojjXAG6tSvG1Gv/5/NJWByd/V25aDtP1YQFNC6KSA2os4PO0c7X193kuGh3Z5s1kZcl8R0vY2vS6QsPy/HgEkaIrnrU16A6fG5evbgdIB/8mkoiFMmnmNlNMxt3c2tsTcaAXHpFMncVy63OC7I5v8tEqQtn7Qtzxe//EFiN8K/ioxZkS7Uts241R+aEExi/t/0ohl3/sF1mZvT5s7b6MKWQgEQsFTcZJQxfeONmBGAs89OKKTowQuS5vJFSpljV1ZxiWuLrUTf5fG0tXUL5IsViwFKSLMwreADu5l/LrJNifZb+kL5vwXIf9TSLSEG9prn0ULtWrkjoGkDLG/VFxIoD+YeZXm/j6/v7+MIzAiEW7hY28mTeq+zixO+V0zR26Kq7ewUGi9BxVT2cA2DevfPuHKeGbRpkCyUXcZgnL8Lu74kFdY8Prn1AmZa33X/yrXvDweaRbS4ReeN/juWNFSc1aoAQe11FwLvGJwzdSC9acf/EJXk7J8SVhDyj7Mf5ojHk9xfIPU+pz9gzngfn9UEjXyMKD+YmN4BctXxxDYMfvNdKxgG48jtw6vEGK93oV7bvPzjCHiNRxRJFFxnWUwnNfxDg8Cu+U6nIMz61e+6m/uRrPgMPQaou6JUlH4b4zscKHodXDcqKk1Wa7Owiz84vXgZIwaOFj8Gu/fesdKt2xIVnBYtmnK8xUXewjbWPchvqG3NEdAZTLbpFSYEurX6dcUtrVHBoFVtSEqnEuZLgih5q/adubvnJSFUD1bBUlaq1hd+NLZX5bEapNAvDAMGQUznLmgKlsfIm/Mw9kWBuWYHjjR+hoVSXzN/bJU2wSVtdGVCp6rFWuWbr42+Wz5jvZMUaR1oqyfLwCaGQiqLPn4KMCK4QynwWew9nTXOfjvO2vrUnN/btSqPs6V9HDiB4TZOpvXufw1Ztqm6rbftGNFzxGmG3fS4jGcJsc3UJua7KoyeFdOmD2N1r/pPcWyHRZk2/mpqkTK/69eMt62/I6d1awCPsakat1scrjTJpFiEe/eT2XePgJd5Rb76sdwvzR8NiaVOlWTPDQjrcYwcUH4Y9R/ezGKBIbHBoLM7HKis8GruqrCarLdFSwSD4eihc4bIrYWQZ/CVO08exeJiBYLOwOB2tzaHS/eUcAIkjndUXw9eg5hw5RDdFwIwOp5UkQMFBIazNx/K0IiiQpWNOsmhJNvjdNIX3peOl1BRlXbzQUXnMORoImtdoyMHlwNoYKMlncd/V+YwEKsq1WXNIA1tRvgC61Gp44NDKypje5RwOtEITDnuVbK4KeddChnSMkwuJD73tLv7hmFVJjhNqiIiZAtqtFMEhWZTnlPKpF+AEbkKOGqUYFqGI1Tp0IkhoUVBJ5q1JV454RanmLpX5WCvA0vKlXYvKcOISz8F7N1U6uVhFgQQ6OZp8LFjuVplU7YCfS1CilfrwUHhbtLIw6CEwyOUCQOBo4L4WrLFxK8xhEkEqpEzk6HdinIVQ8FklAXn+njLCBfbYlSmgeBd1ofISJSh7qimVQ6LOKp3iYKC3d5b6Dzq6b3qsS1b1H5chX4IgaO3hNcevftoQ3dD0LAjCwSC3FV7lXEPHnJLAOJkHdbrCXzzqcHAKfzXAPzk7tmA+5qHW9xiwlDkeRC8w93dcT/NMFWM/ZuhGhqGqq9cy5GHqOpRPkt37Dro5xTxms/ffPN3AOIoMfr8THVDUGLZ3qWqUd46QbBVlw/TMr3J5Scbcw56jTMUhY16Rk6+V5n3C+rjSjs7V66sAciWPbVZg24bNZ0z5fW10zJhnsHldcUbQrULnM3TPtMeZ83UzLzML0AM/Moyfi2j+QZZ+rpjR0zxiqKJR2l5F2X7UoFCic0wtoSgGifI4S16hyYPy82PAvc3p5aqPe3jvwnZS5IICkSCXaQWqPObpW8rQSoYcQ1SL7i6ejlN1O7oryNqMbYZjqpxuLpgD7AmgM7c+oIQn3Ag5HIJrSjtNS7srhnRNYFzSBhsCCBL7kOFigHHjxTCxBy9GBDx9McoU9GKeQGwHY9aLJe1vww9WqmjOCFppzKxxI4YMm8Cx65Ob1TxcKS5XsJdu7OSEDFjtIFd4THODA7KPyvy6rms+PSch/qluRVgm64W6Bxv9tR792F5uVn0FM+e36dIoJ8SyjrZ7LDOy1iJWjuqJq9q4IU1BtJPyJ6/AobxdwXJfYbLF6HH2Mytrbk4iK3M5schBsZw0XCCHZf4KvnoK+v1ZxskrV+z3VP6S0EyV6edizV/OQo5mcqZqC/MfUiO3LMPC+kuhb9ezGAwv8zGeNkIu5qTYkahyim7qx5Xx8pwmPZaPLp2orVgoI/Xbr3aW6RwH5fSC4x4Hc0pI0vmrA8pJrfspaA6Z2nZanQZjmo05DOK/fQMO5I9TEZ6T3ujgbU6PKS1HWE6hlyz9suiesMYvaSjauIKwRBzlmJWFKV6tr3RyzHOrnRTWLRP6+79Qs4gGxwim3+TFjTzWrbg74tNJY7DkFJRU1DS0LKxsctjlyuOQr4BTYR397/XwKlKsRKky5SpUqlItJCwiKqZOXL0GjZo0S0hKScvIatGqTbsOnRZZHBggAAU8gAE+wIEACIEIiIEESIEMECFDhQ4TNvIooowq6miidVV00ccQLsaYYo4l1tiSE3tykxdH8rcnx4jL5XfxorF8eY/pQXjLi3iZHJjowRpieW9/D9xWcKJ46Rpq++XZtXpk2coVSCJHkMRm94v95bwHeQRo72jIG8LTvIesVPgDvQL0knOFdJET18/Fh4/MzqUxNtaDLQtko00JBOEVG54p/soHpvA1Hc+V2OrgkZt3sRmZiMkOZyQ4JvtIsejy+pKBoR7MR+BGzyM3Zvbc6HORK1Z8Ztjtdd+yx1sK1X+HTqb8UQB2XR0B9zee9HQU4h9flxaG8vYrnxmX4bBweWYBptoyguP/pdOAYKIVRGdCPr6b/AEhoNAHC1i4bDviW2hbQj+z1x/GoXkOCl1pjuYsd3gUnwM2xAt9mZdJ3/AxK07uwNK87+Di32/s/NAp/4nX36HQCQAA)format("woff2")
}
.katex {
font: normal 1.21em KaTeX_Main, Times New Roman, serif;
line-height: 1.2;
text-indent: 0;
text-rendering: auto
}
.katex * {
-ms-high-contrast-adjust: none !important;
border-color: currentColor
}
.katex .katex-mathml {
clip: rect(1px, 1px, 1px, 1px);
border: 0;
height: 1px;
overflow: hidden;
padding: 0;
position: absolute;
width: 1px
}
.katex .base {
position: relative;
white-space: nowrap;
width: -webkit-min-content;
width: -moz-min-content;
width: min-content
}
.katex .base,
.katex .strut {
display: inline-block
}
.katex .mathnormal {
font-family: KaTeX_Math;
font-style: italic
}
.katex .vlist-t {
border-collapse: collapse;
display: inline-table;
table-layout: fixed
}
.katex .vlist-r {
display: table-row
}
.katex .vlist {
display: table-cell;
position: relative;
vertical-align: bottom
}
.katex .vlist>span {
display: block;
height: 0;
position: relative
}
.katex .vlist>span>span {
display: inline-block
}
.katex .vlist>span>.pstrut {
overflow: hidden;
width: 0
}
.katex .vlist-t2 {
margin-right: -2px
}
.katex .vlist-s {
display: table-cell;
font-size: 1px;
min-width: 2px;
vertical-align: bottom;
width: 2px
}
.katex .msupsub {
text-align: left
}
.katex .sizing.reset-size6.size3 {
font-size: .7em
}
body {
counter-reset: katexEqnNo mmlEqnNo
}
</style>
<meta name=referrer content=no-referrer>
<style>
.sf-hidden {
display: none !important
}
</style>
<meta http-equiv=content-security-policy
content="default-src 'none'; font-src 'self' data:; img-src 'self' data:; style-src 'unsafe-inline'; media-src 'self' data:; script-src 'unsafe-inline' data:; object-src 'self' data:; frame-src 'self' data:;">
<noscript>
<style>
#theme-toggle,
.top-link {
display: none;
}
</style>
<style>
@media (prefers-color-scheme: dark) {
:root {
--theme: rgb(29, 30, 32);
--entry: rgb(46, 46, 51);
--primary: rgb(218, 218, 219);
--secondary: rgb(155, 156, 157);
--tertiary: rgb(65, 66, 68);
--content: rgb(196, 196, 197);
--hljs-bg: rgb(46, 46, 51);
--code-bg: rgb(55, 56, 62);
--border: rgb(51, 51, 51);
}
.list {
background: var(--theme);
}
.list:not(.dark)::-webkit-scrollbar-track {
background: 0 0;
}
.list:not(.dark)::-webkit-scrollbar-thumb {
border-color: var(--theme);
}
}
</style>
</noscript></head>
<body class="dark vsc-initialized" id=top>
<main class=main>
<article class=post-single>
<div class=post-content>
<p>Quantum mechanics is weird. Why should we believe it?</p>
<p>N. D. Mermin published two amazing articles, “Bringing home the atomic world: Quantum mysteries for
anyone” (1981), and “Quantum mysteries revisited” (1990), which describe thought experiments (based
on real experiments) that present a fundamental “paradox” of reality that has led scientists to
create such an exotic theory.</p>
<blockquote>
<p>In the paper that follows I present the Einstein-Podolsky-Rosen conundrum, without mention of
wave functions, superposition, wave-particle duality, the uncertainty principle, incompatible
observables, electron spin, or any other quantum-mechanical notions. <em>– Mermin</em></p>
</blockquote>
<p>While I still consider these two articles the best to share with quantum mechanics skeptics, they
have separate strengths. The second paper’s experiment is more surprising, but the first paper’s
arguments are more complete.</p>
<p>Here I copy-paste sentences from the two articles into a single article that captures the strengths
of both. The words here are 99% Mermin’s. I have merely re-arranged them and cut out the
redundancies. I have also omitted the sections targeted at physicists.</p>
<hr>
<p>Abstract: A simple device is described, based on a version of Bell’s inequality, whose operation
directly demonstrates some of the most peculiar behavior to be found in the atomic world. To
understand the design of the device one has to know some physics, but the extraordinary implications
of its behavior should be evident to anyone. Except for a preface, the paper is addressed to the
general reader.</p>
<h3 id=preface>PREFACE<a hidden class="anchor sf-hidden" aria-hidden=true href=#preface>#</a></h3>
<p>The 1935 thought experiment of Einstein, Podolsky, and Rosen challenged the quantum-mechanical
doctrine that simultaneous values of incompatible observables are not only impossible to know, but
also meaningless to contemplate. The correlations revealed by that experiment underly much of
Einstein’s subsequent insistence that the quantum theory, though it might well account correctly for
all measurements, was only a step toward a more complete theory that would give meaning to the
values of unmeasured properties.</p>
<p>For almost three decades the objections to Einstein’s views on the reality of unmeasured properties
were entirely philosophical. “One should no more rack one’s brain about the problem of whether
something one cannot know anything about exists all the same, than about the ancient question of how
many angels are able to sit on the point of a needle.” In 1964, however, J. S. Bell showed that such
assumptions of existence can have observable consequences. These can be at odds with quantitative
numerical predictions of the quantum theory, and thus, if the theory is correct, with observable
physical behavior.</p>
<p>Experiments since Bell’s paper indicate that nature behaves consistently with quantum mechanics, but
not with the concept of reality Einstein demanded from a satisfactory theory. The metaphysical
conundrum with which Einstein, Podolsky, and Rosen attacked the accepted interpretation of quantum
mechanics can not be extracted directly from a few simple facts, without any reference at all to the
conceptual apparatus of the quantum theory. The point is no longer that quantum mechanics is an
extraordinarily (and for Einstein, unacceptably) peculiar theory, but that the world is an
extraordinarily peculiar place.</p>
<p>In the paper that follows I present a Greenberger-Horne-Zeilinger variation of the
Einstein-Podolsky-Rosen conundrum, without mention of wave functions, superposition, wave-particle
duality, the uncertainty principle, incompatible observables, electron spin, or any other
quantum-mechanical notions. The argument is addressed to readeres who know nothing of the quantum
theory or, for that matter, of classical physics either. My aim is to bring such readers directly up
against one of the most strikingly odd ways the world can behave. Those who follow the argument
should be as able as practicing physicists to ponder the metaphysical implications of the
Einstein-Podolsky-Rosen conundrum.</p>
<p>I begin by describing a certain device. The device contains some black boxes, but the relevant
features of its behavior are fully described, just as one can fully describe what comes out of a
radio when the knobs turn, without delving into electromagnetic theory.</p>
<p>In the second half of the paper I point out the conundrum posed by the existence of such a device. No
resolution of the conundrum is offered. Many physicists simply deny that it is a conundrum, a
position readers can accept or reject for themselves.</p>
<h3 id=i-the-device-and-what-it-does>I. THE DEVICE AND WHAT IT DOES<a hidden class="anchor sf-hidden"
aria-hidden=true href=#i-the-device-and-what-it-does>#</a></h3>
<p>I shall describe a device that achieves a rather remarkable effect by exploiting the known behavior
of matter on the atomic level. Although this device has not been built, there is no reason in
principle why it could not be, and probably no insurmountable practical difficulties. The device has
four unconnected parts. By “unconnected” I mean that there are neither mechanical connections (e.g.,
pipes, rods, strings, or wires) nor electromagnetic connections (e.g., radio, radar, or light
signals) nor any other known relevant connections. Irrelevant connections may be hard to avoid. For
example, all four parts might sit on the same table top.</p>
<p><img loading=lazy
src=""
alt="Three detectors with a box in the center emanating particles">
</p>
<p>Three of the parts (A, B, and C) are detectors. Each detector has a switch that can be set in one of
two positions (labeled 1 and 2) and a red and a green light bulb. When a detector is set off it
flashes either its red light or its green. It does not matter how the switch is set, though whether
it flashes red or green may well depend on the setting. The only purpose of the lights is to
communicate information to the observer; marks on a ribbon of tape would serve as well. I mention
this only to emphasize that the unnconectedness of the parts of the device prohibits any mechanism
in either detector, that can modify its behavior according to the color that may have flashed on the
other.</p>
<p>The fourth piece of the device is a box placed between the detectors. Whenever a button on the box is
pushed, shortly thereafter three particles emerge, moving off in different directions toward the
three detectors.</p>
<p>Each detector flashes either red or green whenever a particle reaches it. Things are aimed and
adjusted so that within a second or two of every push of the button, each detector flashes one or
the other of its two colored lights.</p>
<p>Because there are no connections between parts of the device, the link between pressing the button on
the box and the subsequent flashing of the detectors can only be provided by the passage of the
particles from the box to the detectors. Additional instruments or shields could be used to confirm
the lack of any other communication between the box and the detectors, or between the detectors
themselves.</p>
<p>The device is operated repeatedly in the following way: the switch on any detector is set to one of
its two possible positions; this gives eight possible settings for the three detectors: 111, 112,
121, 122, 211, 212, 221, and 222. The button on the box is pushed and, somewhat later, each detector
flashes one of its lights. The flashing of the detectors need not be simultaneous. By changing the
distance between the box and the detectors we can arrange that the devices flash in any order. It
also does not matter whether the switches are set to their positions before or after the particles
leave the box, as long as each is set before a particle actually reaches the detector. One could
even arrange for the switch on B not to be set until after A had flashed (but, of course, before B
flashed).</p>
<p>After all detectors have flashed their lights, the setting of the switches and the colors that
flashed are recorded using the following notation: 122 GRG indicates that just one of the detectors
is set to 1 (and the others to 2) and just one of the detectors flashed red (and the others flashed
green); 111 RRG indicates that all detectors are set to 1 and just one of the detectors flashed
green (and the others flashed red); and so on. Here is a typical fragment from a record of many
runs.</p>
<table>
<thead>
<tr>
<th style=text-align:center></th>
<th style=text-align:center></th>
<th style=text-align:center></th>
<th style=text-align:center></th>
<th style=text-align:center></th>
<th style=text-align:center></th>
<th style=text-align:center></th>
<th style=text-align:center></th>
</tr>
</thead>
<tbody>
<tr>
<td style=text-align:center>221 RRR</td>
<td style=text-align:center>221 GGR</td>
<td style=text-align:center>212 RRR</td>
<td style=text-align:center>122 RRR</td>
<td style=text-align:center>221 RRR</td>
<td style=text-align:center>212 RGG</td>
<td style=text-align:center>212 RGG</td>
<td style=text-align:center>212 GRG</td>
</tr>
<tr>
<td style=text-align:center><em>111 GRR</em></td>
<td style=text-align:center>221 RRR</td>
<td style=text-align:center>221 RGG</td>
<td style=text-align:center>212 RGG</td>
<td style=text-align:center>212 GRG</td>
<td style=text-align:center>122 RGG</td>
<td style=text-align:center>221 RGG</td>
<td style=text-align:center>221 GGR</td>
</tr>
<tr>
<td style=text-align:center>122 GGR</td>
<td style=text-align:center><em>111 GGG</em></td>
<td style=text-align:center>221 GGR</td>
<td style=text-align:center>212 GGR</td>
<td style=text-align:center>221 RGG</td>
<td style=text-align:center>212 GRG</td>
<td style=text-align:center>221 RGG</td>
<td style=text-align:center>212 GRG</td>
</tr>
<tr>
<td style=text-align:center><em>111 RRG</em></td>
<td style=text-align:center><em>111 GGG</em></td>
<td style=text-align:center><em>111 RRG</em></td>
<td style=text-align:center>212 GGR</td>
<td style=text-align:center><em>111 RRG</em></td>
<td style=text-align:center>221 RRR</td>
<td style=text-align:center>122 GRG</td>
<td style=text-align:center><em>111 GGG</em></td>
</tr>
<tr>
<td style=text-align:center>212 GGR</td>
<td style=text-align:center><em>111 GGG</em></td>
<td style=text-align:center>221 GGR</td>
<td style=text-align:center>221 GRG</td>
<td style=text-align:center>221 GRG</td>
<td style=text-align:center><em>111 GGG</em></td>
<td style=text-align:center>122 RRR</td>
<td style=text-align:center>122 RRR</td>
</tr>
<tr>
<td style=text-align:center>122 RRR</td>
<td style=text-align:center>221 RGG</td>
<td style=text-align:center>122 GGR</td>
<td style=text-align:center><em>111 GGG</em></td>
<td style=text-align:center>122 GRG</td>
<td style=text-align:center>221 RRR</td>
<td style=text-align:center>221 GGR</td>
<td style=text-align:center>221 RRR</td>
</tr>
<tr>
<td style=text-align:center><em>111 RGR</em></td>
<td style=text-align:center>221 GRG</td>
<td style=text-align:center>212 RGG</td>
<td style=text-align:center>221 GGR</td>
<td style=text-align:center>212 GRG</td>
<td style=text-align:center>212 GGR</td>
<td style=text-align:center>221 RRR</td>
<td style=text-align:center>122 GGR</td>
</tr>
<tr>
<td style=text-align:center><em>111 RGR</em></td>
<td style=text-align:center>212 RRR</td>
<td style=text-align:center>122 GGR</td>
<td style=text-align:center>221 GRG</td>
<td style=text-align:center><em>111 GRR</em></td>
<td style=text-align:center><em>111 GRR</em></td>
<td style=text-align:center>221 GGR</td>
<td style=text-align:center>122 GRG</td>
</tr>
</tbody>
</table>
<p>We record only the cases where an odd number of devices (1 or 3) have been set to 1. The results of
any other setting are of no consequence to our demonstration.</p>
<p>The accumulated data have a random character, but there is a property of the data which always holds
true: If just one detector is set to 1 (and the others to 2), then an odd number of red lights
always flash - i.e., either all three detectors flash red, or there is one red flash and two green
ones. (All four outcomes - RRR, RGG, GRG, or GGR - are equally likely, but this detail is of no
importance.) If all three detectors are set to 1, then an odd number of red lights is never observed
to flash - either two of the three flash red or all three flash green.</p>
<p>This is all one needs to know about the device and how it operates.</p>
<h3 id=ii-the-conundrum-of-the-device>II. THE CONUNDRUM OF THE DEVICE<a hidden class="anchor sf-hidden"
aria-hidden=true href=#ii-the-conundrum-of-the-device>#</a></h3>
<p>The data produced by the device may seem harmless enough, but some scrutiny reveals them to be as
surprising as a conjurer’s trick. My emphasis that no pieces of the device could communicate with
any others except through the particles, was precisely to forestall the search for hidden wires,
mirrors, or cards up the sleeve that one feels impelled to embark upon, once the implications of the
data are grasped.</p>
<p>Why do the detectors flash the way they do when the switches are set? Since the detectors are
unconnected there is no way for one to “know” how the switches on the others are set; nothing in the
construction of any detector is designed to allow its functioning to be affected in any way by the
setting of switches on the others (or by the colors of light flashed by the others).</p>
<p>There is a very simple way to explain the results. We need only suppose that some property of each
particle (such as its speed, size, or shape) determines the color its detector will flash for both
of the switch positions. What that property is does not matter; it is enough that the various states
or conditions of each particle can be divided into four types: <span class=katex><span
class=katex-mathml><math xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>R</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>_R^R</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span>,
<span class=katex><span class=katex-mathml><math xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>R</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>_G^R</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span>,
<span class=katex><span class=katex-mathml><math xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>G</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>_R^G</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span>,
<span class=katex><span class=katex-mathml><math xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>G</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>_G^G</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span>.
A particle whose state is of type <span class=katex><span class=katex-mathml><math
xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>R</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>_G^R</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span>,
for example, will always cause its detector to flash red for setting 1 of the switch and green for
setting 2; a particle in a state of type <span class=katex><span class=katex-mathml><math
xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>G</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>_G^G</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span>
will cause its detector to flash green for any setting of the switch; and so on. The four types
encompass all possible cases. The detector extracts from each type of state a definite set of
instructions for what color to flash for both of the possible settings of its switches; thus each
particle can be viewed as carrying such a set of instructions to its detector through the value of
the relevant property.</p>
<p>The totality of flashing instructions carried by the three particles in a given run can be summarized
by listing the instructions carried by all three of them. This hypothesis, that the particles in a
run carry instruction sets, is the obvious way to account for what happens. It cannot be proved that
there is no other way, but I challenge the reader to suggest any.</p>
<p>And therein lies a conundrum, because this hypothesis, the only apparent way to account for the
behavior, is quite incompatible with the data.</p>
<p>Let us set aside, for the moment, the 111 case (it will return to haunt us) and consider the cases
122, 212, and 221 in which just one detector is set to 1. A run in which the instructions carried by
the particles were <span class=katex><span class=katex-mathml><math
xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>R</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>G</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>G</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>{_G^R} {_R^G} {_R^G}</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span class=mord><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span></span>
would result in RRR if the switch settings were 122, GGR for 212, and GRG for 221. <span
class=katex><span class=katex-mathml><math xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>R</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>G</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>G</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>{_G^R} {_R^G} {_R^G}</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span class=mord><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span></span>
is a legal set of instructions for these cases, since each of the three possible switch settings
results in an odd number of red flashes. [An example of an illegal set of instructions is <span
class=katex><span class=katex-mathml><math xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>R</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>R</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>G</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>{_G^R} {_R^R} {_R^G}</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span class=mord><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span></span>,
for this gives an even number of red flashes (GRR) for the switch setting 212.]</p>
<p>It is not hard to enumerate all the legal instruction sets. Out of the 64 possible instruction sets
here are the eight legal ones:</p>
<p><span class=katex><span class=katex-mathml><math xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>R</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>R</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>R</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>{_R^R} {_R^R} {_R^R}</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span class=mord><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span></span>&nbsp;&nbsp;&nbsp;<span
class=katex><span class=katex-mathml><math xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>R</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>G</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>G</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>{_R^R} {_G^G} {_G^G}</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span class=mord><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span></span>&nbsp;&nbsp;&nbsp;<span
class=katex><span class=katex-mathml><math xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>G</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>R</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>G</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>{_G^G} {_R^R} {_G^G}</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span class=mord><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span></span>&nbsp;&nbsp;&nbsp;<span
class=katex><span class=katex-mathml><math xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>G</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>G</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>R</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>{_G^G} {_G^G} {_R^R}</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span class=mord><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span></span>
</p>
<p><span class=katex><span class=katex-mathml><math xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>R</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>G</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>G</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>{_G^R} {_R^G} {_R^G}</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span class=mord><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span></span>&nbsp;&nbsp;&nbsp;<span
class=katex><span class=katex-mathml><math xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>R</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>R</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>R</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>{_G^R} {_G^R} {_G^R}</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span class=mord><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span></span>&nbsp;&nbsp;&nbsp;<span
class=katex><span class=katex-mathml><math xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>G</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>G</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>R</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>{_R^G} {_R^G} {_G^R}</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span class=mord><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span></span>&nbsp;&nbsp;&nbsp;<span
class=katex><span class=katex-mathml><math xmlns=http://www.w3.org/1998/Math/MathML>
<semantics>
<mrow>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>G</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>G</mi>
<mi>R</mi>
</msubsup>
<msubsup>
<mrow></mrow>
<mi>R</mi>
<mi>G</mi>
</msubsup>
</mrow>
<annotation encoding=application/x-tex>{_R^G} {_G^R} {_R^G}</annotation>
</semantics>
</math></span><span class=katex-html aria-hidden=true><span class=base><span class=strut
style=height:1.1167em;vertical-align:-0.2753em></span><span class=mord><span
class=mord><span></span><span class=msupsub><span class="vlist-t vlist-t2"><span
class=vlist-r><span class=vlist style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span><span
class=mord><span class=mord><span></span><span class=msupsub><span
class="vlist-t vlist-t2"><span class=vlist-r><span class=vlist
style=height:0.8413em><span
style=top:-2.4247em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight"
style=margin-right:0.00773em>R</span></span></span><span
style=top:-3.063em;margin-right:0.05em><span class=pstrut
style=height:2.7em></span><span
class="sizing reset-size6 size3 mtight"><span
class="mord mathnormal mtight">G</span></span></span></span><span
class=vlist-s>​</span></span><span class=vlist-r><span
class=vlist
style=height:0.2753em><span></span></span></span></span></span></span></span></span></span></span>
</p>
<p>Now, finally, we consider the fourth type of run, in which all three detectors are set to 1, and an
odd number of red flashes is never observed. The above instruction sets must determine the outcomes
of these runs as well. For who is to prevent somebody from flipping the two switches set to 2 over
to 1, just before the particles arrive? But an inspection of the upper rows reveals that <em>every
one of the eight allowed instruction sets results in an odd number of red flashes when all three
switches are set to 1.</em> If the instruction sets existed, then 111 runs would <em>always</em>
have to produce an odd number of red flashes. But they <em>never</em> do, as I remarked, quite
possibly without you strenuously objecting.</p>
<p>Thus a <em>single</em> 111 run suffices all by itself to give data inconsistent with the otherwise
compelling inference of the other switch settings 122, 212, and 221. This is the conundrum posed by
the device: there is no obvious explanation for why the colors flash the way that they do.</p>
<p>I shall not describe how contemporary physical theory accounts for the behavior of the device except
to note that although, in its own way, the explanation is very simple, it is far from obvious and,
some might argue, hardly an explanation at all. Instead, I only emphasize again that we live in a
world in which such a device can be built; nature is stranger and more wonderful than we had once
thought or could possible have imagined. Ponder the device a little more, if that seems too extreme
a conclusion.</p>
</div>
</article>
</main>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment