Last active
September 25, 2017 19:26
-
-
Save talaikis/6672c9d51417192b0cac6567e1cabb49 to your computer and use it in GitHub Desktop.
Probabilistic true value
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
This idea first used for bitcoin. Data file format is MT4's. | |
Similar strategy(-ies) is used by market makers. | |
It's definitely betetr than any moving average based strategy. | |
ETH donations accepted: 0x007F11363140F2edE5f6d4F1a19A352861e013e0 | |
""" | |
from os.path import join | |
from pandas import read_csv, to_datetime, DataFrame, read_pickle | |
import matplotlib.pyplot as plt | |
from sklearn.neighbors import KernelDensity | |
from scipy.integrate import quad | |
from numpy import exp, log, where, column_stack, arange, polyfit | |
from scipy import stats | |
import statsmodels.api as sm | |
symbol = "BTCUSD" | |
period = "240" | |
optimize = False | |
start = 50 | |
step = 100 | |
price_from = 100 | |
price_to = 7000 | |
percentile = 50 | |
strategy_only = True | |
show_histo = False | |
show_sig = True | |
comparison = True | |
threshold = 5 | |
leverage = 6 | |
def read(): | |
df = read_csv(filepath_or_buffer="{0}{1}.csv".format(symbol, period), sep=',', delimiter=None, \ | |
header=None, names=['Date', 'Time', 'OPEN', 'HIGH', 'LOW', 'CLOSE', 'VOLUME'], \ | |
index_col=0) | |
df.sort_index(axis=0, ascending=True, inplace=True) | |
df.index = to_datetime(df.index).to_pydatetime() | |
df.index.name = "DATE_TIME" | |
return df | |
def histo(df): | |
""" | |
Plots histogram with 0 vertical line (red) and average (blue). | |
""" | |
df["ret"] = df.CLOSE.pct_change() | |
df = df.dropna() | |
plt.hist(df["ret"], bins=100) | |
plt.axvline(df["ret"].mean(), lw=2, color='b') | |
plt.axvline(0.0, lw=2, color='r') | |
plt.show() | |
def ptv(df, symbol, start, end, price_from, price_to, step): | |
preds = [] | |
for d in range(start, end): | |
print("{0}/{1}".format(d, len(df.index))) | |
kd = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(df["CLOSE"].iloc[(d-start):d].values.reshape(-1, 1)) | |
lst = [] | |
for i in range(price_from, price_to, step): | |
range_start = i | |
range_end = i + step | |
probability = quad(lambda x: exp(kd.score_samples(x)), range_start, range_end)[0] | |
lst.append(probability * (range_start + range_end)/2) | |
preds.append([sum(lst), df.ix[d].CLOSE]) | |
df2 = DataFrame(preds, index=df.iloc[start:end].index) | |
df2.columns = ["PREDS", "CLOSE"] | |
df2["RETURNS"] = df2["CLOSE"].diff() | |
df2.to_pickle("preds_{0}_{1}_{2}.pckl".format(symbol, period, start)) | |
def mlog(x): | |
return log(x) | |
def strategy(end): | |
df = read_pickle("preds_{0}_{1}_{2}.pckl".format(symbol, period, start)) | |
if show_histo: | |
histo(df=df) | |
df["diff"] = df["CLOSE"] - df["PREDS"] | |
df["var"] = df["diff"] * df["diff"] | |
df["logvar"] = df["var"].apply(mlog) | |
if show_sig: | |
df["logvar"].plot() | |
plt.axhline(threshold) | |
plt.show() | |
df = df.dropna() | |
df["sig"] = where(df["logvar"] <= threshold, 1, 0) | |
df["trades"] = where((df["sig"] == 1) & (df["sig"].shift()) == 0, 1, 0) | |
print("Trades {0}".format(sum(df["trades"]))) | |
df["returns"] = df["sig"].shift() * df["CLOSE"].diff() * leverage | |
print("Instrument STD {0}".format(df["CLOSE"].diff().std())) | |
print("Strategy STD {0}".format(df["returns"].std())) | |
print("Instrument MEAN {0}".format(df["CLOSE"].diff().mean())) | |
print("Strategy MEAN {0}".format(df["returns"].mean())) | |
if comparison: | |
plt.plot(df.PREDS, color='g', lw=3) | |
plt.plot(df.iloc[start:end].CLOSE, color='g') | |
plt.ylabel("Symbol: {0} | Period: {1}".format(symbol, start)) | |
plt.show() | |
df["returns"].cumsum().plot() | |
df["CLOSE"].diff().cumsum().plot() | |
plt.show() | |
def main(strategy_only): | |
df = read() | |
end = len(df.index) | |
if not strategy_only: | |
if optimize: | |
for k in range(100, 800): | |
ptv(df=df, symbol=symbol, start=k, end=end, price_from=price_from, price_to=price_to, step=step) | |
else: | |
ptv(df=df, symbol=symbol, start=start, end=end, price_from=price_from, price_to=price_to, step=step) | |
strategy(end=end) | |
else: | |
strategy(end=end) | |
main(strategy_only=strategy_only) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment