Goals: Add links that are reasonable and good explanations of how stuff works. No hype and no vendor content if possible. Practical first-hand accounts of models in prod eagerly sought.

/newbot
, select a name (to be shown in chats) and handle for your bot;<token>
);/setdescription
and /setuserpic
.https://api.telegram.org/bot<token>/getUpdates
(replace <token>
with your token);chat
part, find and note the id
field - a positive or negative number (later referred to as <chat_id>
).#!/bin/bash | |
# | |
# script to extract ImageNet dataset | |
# ILSVRC2012_img_train.tar (about 138 GB) | |
# ILSVRC2012_img_val.tar (about 6.3 GB) | |
# make sure ILSVRC2012_img_train.tar & ILSVRC2012_img_val.tar in your current directory | |
# | |
# https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md | |
# | |
# train/ |
<!DOCTYPE html> | |
<html lang="en"> | |
<head> | |
<meta charset="utf-8"> | |
{{ bokeh_css }} | |
{{ bokeh_js }} | |
<link rel="stylesheet" href="stocktext/static/css/styles.css"/> | |
</head> | |
<body> | |
{{ plot_div|indent(8) }} |
import argparse | |
import os | |
import boto3 | |
class S3MultipartUpload(object): | |
# AWS throws EntityTooSmall error for parts smaller than 5 MB | |
PART_MINIMUM = int(5e6) |
Table of Contents
Overview: http://matplotlib.org/faq/usage_faq.html#usage
Multiple, manual Axes: https://python4mpia.github.io/plotting/advanced.html
Another intro article http://pbpython.com/effective-matplotlib.html
git checkout -b [name_of_your_new_branch]
git push origin [name_of_your_new_branch]
""" | |
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) | |
BSD License | |
""" | |
import numpy as np | |
# data I/O | |
data = open('input.txt', 'r').read() # should be simple plain text file | |
chars = list(set(data)) | |
data_size, vocab_size = len(data), len(chars) |
import pymssql | |
import pandas as pd | |
## instance a python db connection object- same form as psycopg2/python-mysql drivers also | |
conn = pymssql.connect(server="172.0.0.1", user="howens",password="some_fake_password", port=63642) # You can lookup the port number inside SQL server. | |
## Hey Look, college data | |
stmt = "SELECT * FROM AlumniMirror..someTable" | |
# Excute Query here | |
df = pd.read_sql(stmt,conn) |