Created
May 31, 2018 00:13
-
-
Save venik/1bce21b59af68215e89a79a6e7bd6fc9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import numpy.linalg as linalg | |
import matplotlib.pyplot as plt | |
corpus = [] | |
corpus.append('I like deep learning') | |
corpus.append('I like NLP') | |
corpus.append('I enjoy flying') | |
word_index = {} | |
uniq_words = [] | |
idx = 0 | |
# build matrix of corpus words | |
for txt in corpus: | |
words = txt.split() | |
for i in xrange(0, words.__len__()): | |
if words[i] not in word_index: | |
print('word: ' + words[i] + ' new index: ' + str(idx)) | |
word_index[words[i]] = idx | |
uniq_words.append(words[i]) | |
idx += 1 | |
print('================') | |
occurances = np.zeros(idx * idx).reshape(idx, idx) | |
# build matrix of occurances - window 1 | |
for txt in corpus: | |
words = txt.split() | |
print("=> " + txt) | |
for i in xrange(0, words.__len__()): | |
print('word: ' + words[i] + ' index: ' + str(word_index[words[i]])) | |
cur_word_idx = word_index[words[i]] | |
if i > 0: | |
left_word_idx = word_index[words[i - 1]] | |
occurances[cur_word_idx][left_word_idx] += 1 | |
if i < words.__len__() - 1: | |
right_word_idx = word_index[words[i + 1]] | |
occurances[cur_word_idx][right_word_idx] += 1 | |
# print('' + str(occurances)) | |
print ('' + str(occurances)) | |
# factorization | |
U, s, Vh = linalg.svd(occurances, full_matrices=False) | |
for i in xrange(len(uniq_words)): | |
plt.text(U[i, 0], U[i, 1], uniq_words[i]) | |
# plt.axis([-10, -10, 10, 10]) | |
plt.grid() | |
plt.ylim([-0.05, 0.95]) | |
plt.xlim([-1, 0.2]) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment