Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save xuyuji9000/b85f25dab0eb5ee5b499979415b41c46 to your computer and use it in GitHub Desktop.
Save xuyuji9000/b85f25dab0eb5ee5b499979415b41c46 to your computer and use it in GitHub Desktop.
excalidraw of the youtube video "Joscha Bach: Artificial Consciousness and the Nature of Reality | Lex Fridman Podcast #101"

Commands

  • prepare local excalidraw setup
cd ~/Workspace/github/excalidraw/excalidraw
git pull

yarn 
yarn start
  • clone gist to local
git clone [email protected]:b85f25dab0eb5ee5b499979415b41c46.git
{
"type": "excalidraw",
"version": 2,
"source": "http://localhost:3000",
"elements": [
{
"id": "dMZGuTV1ZeZMgfvISlWVt",
"type": "text",
"x": -575.6366734999999,
"y": -753.9063747499999,
"width": 305.3666782635557,
"height": 16.516672588515732,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 2,
"strokeStyle": "solid",
"roughness": 1,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "as",
"roundness": null,
"seed": 293001948,
"version": 787,
"versionNonce": 311021644,
"isDeleted": false,
"boundElements": [],
"updated": 1746765992395,
"link": "https://www.youtube.com/watch?v=P-2P3MSZrBM",
"locked": false,
"text": "Reference\n1. Youtube video: \"Joscha Bach: Artificial Consciousness and the Nature of Reality | Lex Fridman Podcast #101\"",
"fontSize": 6.1172861438947175,
"fontFamily": 6,
"textAlign": "left",
"verticalAlign": "top",
"containerId": null,
"originalText": "Reference\n1. Youtube video: \"Joscha Bach: Artificial Consciousness and the Nature of Reality | Lex Fridman Podcast #101\"",
"autoResize": true,
"lineHeight": 1.35
},
{
"id": "5_cOnsYjRTG2OVoks-NMm",
"type": "rectangle",
"x": -270.26999478798507,
"y": -753.9063750089208,
"width": 489.6254595195378,
"height": 173.25687030082187,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "at",
"roundness": {
"type": 3
},
"seed": 1039841508,
"version": 483,
"versionNonce": 267594356,
"isDeleted": false,
"boundElements": [
{
"type": "text",
"id": "8o6SzLDZp77MtxQJUpjBz"
},
{
"id": "HV8fhSy9Rh5_bwrZTR6mj",
"type": "arrow"
}
],
"updated": 1746765992395,
"link": null,
"locked": false
},
{
"id": "8o6SzLDZp77MtxQJUpjBz",
"type": "text",
"x": -265.26999478798507,
"y": -721.2779398585099,
"width": 401.88763427734375,
"height": 108,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "au",
"roundness": null,
"seed": 399210980,
"version": 459,
"versionNonce": 2080499404,
"isDeleted": false,
"boundElements": [],
"updated": 1746765992395,
"link": null,
"locked": false,
"text": "TIMESTAMP - 00:28:54 \n\nwhat is intelligence?\nJoscha: I think intelligence is the ability to make models.\n",
"fontSize": 16,
"fontFamily": 6,
"textAlign": "left",
"verticalAlign": "middle",
"containerId": "5_cOnsYjRTG2OVoks-NMm",
"originalText": "TIMESTAMP - 00:28:54 \n\nwhat is intelligence?\nJoscha: I think intelligence is the ability to make models.\n",
"autoResize": true,
"lineHeight": 1.35
},
{
"id": "jA0qe2A4lw5B3ruMKjTWX",
"type": "rectangle",
"x": -270.145183138248,
"y": -494.31632029211625,
"width": 489.6254595195378,
"height": 313,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "av",
"roundness": {
"type": 3
},
"seed": 1071425244,
"version": 592,
"versionNonce": 713931764,
"isDeleted": false,
"boundElements": [
{
"type": "text",
"id": "gPJfYLtHXW4SmN9EZUYGP"
},
{
"id": "HV8fhSy9Rh5_bwrZTR6mj",
"type": "arrow"
},
{
"id": "mwEHP4VSxVxhZXn1ibGAW",
"type": "arrow"
}
],
"updated": 1746765992395,
"link": null,
"locked": false
},
{
"id": "gPJfYLtHXW4SmN9EZUYGP",
"type": "text",
"x": -265.145183138248,
"y": -489.01632029211623,
"width": 438.52764892578125,
"height": 302.40000000000003,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "aw",
"roundness": null,
"seed": 64711516,
"version": 990,
"versionNonce": 1530080588,
"isDeleted": false,
"boundElements": [],
"updated": 1746765992395,
"link": null,
"locked": false,
"text": "TIMESTAMP - 00:29:30 \n\nLex: In today's neural network context,\nwhat is intelligence?\n\nJoscha: two aspects to this question.\n1. the representation\nis the representation adequate? for the domain we want to\nrepresent.\n\n2. the other one is the type of model you arrive at, adequate?\nare you modeling the correct domain?\n\nin both these cases, modern AI is LACKING still.",
"fontSize": 16,
"fontFamily": 6,
"textAlign": "left",
"verticalAlign": "middle",
"containerId": "jA0qe2A4lw5B3ruMKjTWX",
"originalText": "TIMESTAMP - 00:29:30 \n\nLex: In today's neural network context,\nwhat is intelligence?\n\nJoscha: two aspects to this question.\n1. the representation\nis the representation adequate? for the domain we want to represent.\n\n2. the other one is the type of model you arrive at, adequate?\nare you modeling the correct domain?\n\nin both these cases, modern AI is LACKING still.",
"autoResize": true,
"lineHeight": 1.35
},
{
"id": "HV8fhSy9Rh5_bwrZTR6mj",
"type": "arrow",
"x": -244.19250723353971,
"y": -575.4079224800768,
"width": 5.684341886080802e-14,
"height": 70.42245850856199,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "ax",
"roundness": null,
"seed": 1287039332,
"version": 79,
"versionNonce": 114957684,
"isDeleted": false,
"boundElements": [],
"updated": 1746765992395,
"link": null,
"locked": false,
"points": [
[
0,
0
],
[
5.684341886080802e-14,
70.42245850856199
]
],
"lastCommittedPoint": null,
"startBinding": {
"elementId": "5_cOnsYjRTG2OVoks-NMm",
"focus": 0.8934798546626442,
"gap": 14.431512613754014
},
"endBinding": {
"elementId": "jA0qe2A4lw5B3ruMKjTWX",
"focus": -0.8939896796617752,
"gap": 19.25603475837659
},
"startArrowhead": null,
"endArrowhead": "arrow",
"elbowed": false
},
{
"id": "CFU8THGlTgL1LJ5aQ72t-",
"type": "rectangle",
"x": -270.52219043818747,
"y": -108.17311609803198,
"width": 489.6254595195378,
"height": 421,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "ay",
"roundness": {
"type": 3
},
"seed": 210998393,
"version": 702,
"versionNonce": 24617932,
"isDeleted": false,
"boundElements": [
{
"type": "text",
"id": "nBGaSQCK5u9Z6DbTfbgv0"
},
{
"id": "mwEHP4VSxVxhZXn1ibGAW",
"type": "arrow"
}
],
"updated": 1746765992395,
"link": null,
"locked": false
},
{
"id": "nBGaSQCK5u9Z6DbTfbgv0",
"type": "text",
"x": -265.52219043818747,
"y": -102.873116098032,
"width": 476.11163330078125,
"height": 410.40000000000003,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "az",
"roundness": null,
"seed": 33332569,
"version": 1933,
"versionNonce": 773738228,
"isDeleted": false,
"boundElements": [],
"updated": 1746765992395,
"link": null,
"locked": false,
"text": "TIMESTAMP - 00:30:00\n\none aspect you are missing is unified learning.\nat some point we discover that everything we sense is part of the\nsame object\nwhich means we learn it into one model, we call this model\nUNIVERSE.\n\n1. the experience of the world, that we are embedded on, is not a\nsecret direct wire to the physical reality.\n\n2. physical reality is a weird quantum graph that we can never\nexperience or get access to\n\n3. But it has these properties, that it can create certain PATTERNS\nat our systematic interface to the world\n\n4. we make sense these patterns, and relationship between these\npatterns we discover, is what we call physical universe.",
"fontSize": 16,
"fontFamily": 6,
"textAlign": "left",
"verticalAlign": "middle",
"containerId": "CFU8THGlTgL1LJ5aQ72t-",
"originalText": "TIMESTAMP - 00:30:00\n\none aspect you are missing is unified learning.\nat some point we discover that everything we sense is part of the same object\nwhich means we learn it into one model, we call this model UNIVERSE.\n\n1. the experience of the world, that we are embedded on, is not a secret direct wire to the physical reality.\n\n2. physical reality is a weird quantum graph that we can never experience or get access to\n\n3. But it has these properties, that it can create certain PATTERNS at our systematic interface to the world\n\n4. we make sense these patterns, and relationship between these patterns we discover, is what we call physical universe.",
"autoResize": true,
"lineHeight": 1.35
},
{
"id": "mwEHP4VSxVxhZXn1ibGAW",
"type": "arrow",
"x": 162.77329259466595,
"y": -183.08293496457992,
"width": 0,
"height": 64.93148604894444,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "#ffffff",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "b00",
"roundness": null,
"seed": 2130126943,
"version": 162,
"versionNonce": 82397772,
"isDeleted": false,
"boundElements": [],
"updated": 1746765992395,
"link": null,
"locked": false,
"points": [
[
0,
0
],
[
0,
64.93148604894444
]
],
"lastCommittedPoint": null,
"startBinding": {
"elementId": "jA0qe2A4lw5B3ruMKjTWX",
"focus": -0.768365869527007,
"gap": 1.7666146724636747
},
"endBinding": {
"elementId": "CFU8THGlTgL1LJ5aQ72t-",
"focus": 0.880992574731249,
"gap": 9.978332817603501
},
"startArrowhead": null,
"endArrowhead": "arrow",
"elbowed": false
},
{
"id": "UibvGM4BcLmUcbHommNKV",
"type": "rectangle",
"x": 404.04338958931186,
"y": -108.43326293434637,
"width": 489.6254595195378,
"height": 486,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "b01",
"roundness": {
"type": 3
},
"seed": 80765899,
"version": 836,
"versionNonce": 291916364,
"isDeleted": false,
"boundElements": [
{
"type": "text",
"id": "bN1rVL_AmqEjKr_X_aqgs"
}
],
"updated": 1746766457580,
"link": null,
"locked": false
},
{
"id": "bN1rVL_AmqEjKr_X_aqgs",
"type": "text",
"x": 409.04338958931186,
"y": -103.0332629343464,
"width": 478.175537109375,
"height": 475.20000000000005,
"angle": 0,
"strokeColor": "#1e1e1e",
"backgroundColor": "transparent",
"fillStyle": "solid",
"strokeWidth": 1,
"strokeStyle": "solid",
"roughness": 0,
"opacity": 100,
"groupIds": [],
"frameId": null,
"index": "b02",
"roundness": null,
"seed": 340243051,
"version": 3024,
"versionNonce": 490676428,
"isDeleted": false,
"boundElements": [],
"updated": 1746766459238,
"link": null,
"locked": false,
"text": "TIMESTAMP - 00:57:45\n\nwe( human ) do attention based learning.\nwe pinpoint the probable region in the network, where we can\nmake an improvement\nwe store this binding state together with expected outcome in a\nprotocol.\n\nThis ability to make indexed memories for the purpose of learning.\nTo revisit these commitments later.\nThis requires a memory of the contents of our attention.\n\nAnother aspect is when I construct my reality, I make mistakes.\nI see things that turn out to be reflections or shadows and so on,\nwhich means I have to be able to point out which features of my\nPERCEPTION gave rise to a present construction of reality.\n\nSo the system needs to pay attention to the earth features that\nare currently on its focus.\n\nIt also needs to pay attention to whether it pays attention itself.\n",
"fontSize": 16,
"fontFamily": 6,
"textAlign": "left",
"verticalAlign": "middle",
"containerId": "UibvGM4BcLmUcbHommNKV",
"originalText": "TIMESTAMP - 00:57:45\n\nwe( human ) do attention based learning.\nwe pinpoint the probable region in the network, where we can make an improvement\nwe store this binding state together with expected outcome in a protocol.\n\nThis ability to make indexed memories for the purpose of learning.\nTo revisit these commitments later.\nThis requires a memory of the contents of our attention.\n\nAnother aspect is when I construct my reality, I make mistakes.\nI see things that turn out to be reflections or shadows and so on,\nwhich means I have to be able to point out which features of my PERCEPTION gave rise to a present construction of reality.\n\nSo the system needs to pay attention to the earth features that are currently on its focus.\n\nIt also needs to pay attention to whether it pays attention itself.\n",
"autoResize": true,
"lineHeight": 1.35
}
],
"appState": {
"gridSize": 20,
"gridStep": 5,
"gridModeEnabled": false,
"viewBackgroundColor": "#ffffff"
},
"files": {}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment