Created
January 18, 2024 20:14
-
-
Save zeux/b9b3019d0f410e07ec468a38b7aebc7c to your computer and use it in GitHub Desktop.
Safetensors load/save benchmark (assumes input model is fp16 and converts to bf16)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import json | |
import os | |
import safetensors | |
import safetensors.torch | |
import sys | |
import time | |
import torch | |
def fast_save_file(tensors, filename, metadata=None): | |
_TYPES = { | |
torch.float32: "F32", | |
torch.float16: "F16", | |
torch.bfloat16: "BF16", | |
getattr(torch, "float8_e5m2", None): "F8_E5M2", | |
getattr(torch, "float8_e4m3fn", None): "F8_E4M3", | |
torch.int32: "I32", | |
torch.int16: "I16", | |
torch.int8: "I8", | |
torch.uint8: "U8", | |
} | |
_ALIGN = 256 | |
header = {} | |
offset = 0 | |
if metadata: | |
header["__metadata__"] = metadata | |
for k, v in tensors.items(): | |
size = v.numel() * v.element_size() | |
header[k] = { "dtype": _TYPES[v.dtype], "shape": v.shape, "data_offsets": [offset, offset + size] } | |
offset += size | |
hjson = json.dumps(header).encode("utf-8") | |
hjson += b" " * (-(len(hjson) + 8) % _ALIGN) | |
with open(filename, "wb") as f: | |
f.write(len(hjson).to_bytes(8, byteorder="little")) | |
f.write(hjson) | |
for k, v in tensors.items(): | |
assert v.layout == torch.strided and v.is_contiguous() | |
v.view(torch.uint8).cpu().numpy().tofile(f) | |
argp = argparse.ArgumentParser() | |
argp.add_argument("input", type=str) | |
argp.add_argument("output", type=str) | |
argp.add_argument("--fast", action="store_true") | |
argp.add_argument("--device", type=str, default="cpu") | |
args = argp.parse_args() | |
size = os.path.getsize(args.input) | |
beg = time.time() | |
# load model files and convert to float16 | |
weights = {} | |
with safetensors.safe_open(args.input, framework="pt", device=args.device) as f: | |
for k in f.keys(): | |
assert(k not in weights) | |
v = f.get_tensor(k) | |
v = v.to(torch.bfloat16) | |
weights[k] = v | |
mid = time.time() | |
# save tensors to disk | |
if args.fast: | |
fast_save_file(weights, args.output) | |
else: | |
safetensors.torch.save_file(weights, args.output) | |
end = time.time() | |
rsize = os.path.getsize(args.output) | |
print(f"load: {size / 1024 / 1024 / 1024:.2f} GiB, {mid - beg:.3f} sec, {size / (mid - beg) / 1e9:.2f} GB/s") | |
print(f"save: {rsize / 1024 / 1024 / 1024:.2f} GiB, {end - mid:.3f} sec, {rsize / (end - mid) / 1e9:.2f} GB/s") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment